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We study the critical breakdown of two-dimensional quantum magnets in the presence of algebraically
decaying long-range interactions by investigating the transverse-field Ising model on the square and
triangular lattice. This is achieved technically by combining perturbative continuous unitary trans-
formations with classical Monte Carlo simulations to extract high-order series for the one-particle
excitations in the high-field quantum paramagnet. We find that the unfrustrated systems change from mean-
field to nearest-neighbor universality with continuously varying critical exponents. In the frustrated case on
the square lattice the system remains in the universality class of the nearest-neighbor model independent of
the long-range nature of the interaction, while we argue that the quantum criticality for the triangular lattice
is terminated by a first-order phase transition line.
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The understanding of quantum phase transitions at zero
temperature has been an active research field over many
decades, since the diverging quantum fluctuations of quan-
tum many-body systems at a quantum-critical point lead to
intriguing universal behavior giving rise to many fascinating
quantummaterialswith novel collective effects. The physical
properties close to a zero-temperature quantum-critical point
can be classified for most systems by universality classes,
which only dependon the dimension and the symmetry of the
underlying system.As a consequence, the critical behavior of
many physical systems can be described by paradigmatic
models for each universality class, which in many cases
correspond to interacting spin systems [1].
One of the most important microscopic models is the

ferromagnetic transverse-field Ising model (TFIM). This
unfrustrated system realizes a quantum phase transition
between a quantum paramagnet and a Z2-symmetry-broken
phase for any lattice in any dimension d [2,3]. The corre-
sponding universality class is the one of the classical Ising
model in dimension dþ 1 [2–4]. In general, the quantum-
critical properties of unfrustrated models with short-range
interactions are well understood. The situation becomes
more interesting in the presence of frustrationwhere different
types of quantum-critical behavior as well as exotic states of
quantum matter are known to occur. Important examples in
the framework of fully frustrated TFIMs are the antiferro-
magnetic TFIM on the triangular and pyrochlore lattice
[5–7]. For the triangular TFIM, an order by disorder
mechanism gives rise to a ground state where translational
symmetry is broken and the universality class of the quantum
phase transition is 3D XY [5,8–10]. In contrast, on the
pyrochlore lattice, disorder by disorder leads to a quantum-
disordered Coulomb phase in the antiferromagnetic TFIM
[11–13] displaying emergent quantum electrodynamics, and

the quantum phase transition to the high-field quantum
paramagnet is first order [14].
All of the above systems are restricted to short-range

interactions. However, there are many important physical
systems where long-range interactions are relevant [15–27].
Important examples are dipolar interactions between spins in
spin-ice materials giving rise to emergent magnetic monop-
oles [18], effective long-range magnetic interactions between
zigzag edges in graphene [28], as well as trapped cold-ion
systems in quantumoptics forwhich the nature of interactions
can be varied flexibly andwhich have realized the long-range
TFIM (LRTFIM) on the triangular lattice [22,23,27].
The critical behavior of quantum systems with long-range

interactions is much less understood. Several studies have
focused on the TFIM chain with long-range interactions
[29–33]. For a ferromagnetic Ising exchange there are three
different regimes. Besides 2D-Ising criticality, as for the
nearest-neighbor TFIM chain, and mean-field (MF) behav-
ior, for intermediate long-range interactions, there is a
window with continuously varying critical exponents. In
contrast, a recent investigation of the frustrated antiferro-
magnetic TFIM chain with long-range interactions indicates
that the critical behavior is always 2D Ising independent of
the nature of the long-range interaction [32]. Much less is
known in 2þ 1 dimensions [34], since numerical inves-
tigations are much harder to perform. This is especially true
when it comes to the interplay of long-range interactions and
frustration. In this Letter, we combine high-order series
expansions with classical Monte Carlo simulations to inves-
tigate such interesting and challenging quantum systems.
Model.—We study the LRTFIM given by
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with Pauli matrices σx=zi describing spins-1=2 located on
lattice sites i. Positive (negative) λ correspond to (anti)
ferromagnetic interactions. Tuning the positive parameter α
changes the long-range behavior of the interaction, where
α ¼ ∞ recovers the nearest-neighbor TFIM. In this work
we focus on the square and triangular lattice illustrated
in Fig. 1.
Approach.—We perform high-order series expansions in

λ about the high-field limit with the long-range Ising
interactions acting as a perturbation to

H0 ¼ −
1

2

X

j

σzj: ð2Þ

The ground state of H0 is given by j↑↑ � � �↑i while the
lowest excitations are single local spin flips. To obtain a
quasiparticle (QP) description we perform a Matsubara-
Matsuda transformation σxj ¼ b̂†j þ b̂j and σzj ¼ 1–2n̂j

[35]. Here, b̂ð†Þj are hard-core boson annihilation (creation)

operators and n̂j ≡ b̂†j b̂j counts the number of particles on
site j. This gives Eq. (1) in a QP language,
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up to a constant of −N=2.
Next we apply perturbative continuous unitary trans-

formations (PCUTs) [36] using white graphs [37] to
transform Eq. (1), order by order in λ, to an effective
QP-conserving Hamiltonian Heff , as it has been done
successfully for the one-dimensional LRTFIM [31]. As a
consequence,Heff is block diagonal in the QP number Q̂≡P

in̂i and the quantum many-body system is mapped to an
effective few-body problem. Here we consider the one-QP
block which can be expressed as

H1QP
eff ¼ E0 þ

X

i;δ

aδðb̂†i b̂iþδ þ H:c:Þ; ð4Þ

with the ground-state energy E0 and the hopping amplitudes
aδ. The one-QP Hamiltonian Eq. (4) is diagonalized by
Fourier transformation yieldingH1QP

eff ¼E0þ
P

kωðkÞb̂†kb̂k.
Although we calculated ωðkÞ at various k [38], in the
following, we focus on the one-QP gap Δ, which is the
minimum of the one-QP dispersion ωðkÞ ¼ a0þP

δ≠0aδ cos ðk · δÞ. The gap is located at k¼0 in the
ferromagnetic cases and at k¼ðπ;πÞ [k¼�ð2π=3;
−2π=3Þ] for the antiferromagnetic LRTFIM on the square
[triangular] lattice in the α ranges we have studied (see Fig. 1
for the definition of basis vectors).
The PCUT determines the hopping amplitudes aδ and

therefore the one-QP dispersion ωðkÞ as a high-order series
expansion in λ in the thermodynamic limit. This can be

done most efficiently via a full graph decomposition in
linked graphs G exploiting the linked-cluster theorem [37].
While for Hamiltonians with short-range interactions the
main challenge lies in the generation of and calculation on
linked graphs contributing in a given order, for long-range
interactions the difficulty is shifted to the final embedding
[31]. In order k perturbation theory, all linked graphs with
up to k links may contribute in the calculation. The
embedding of the graph-specific contribution aGδ to the
hopping amplitudes aδ in Eq. (4) in the infinite lattice
requires the embedding of every single link infinitely many
times due to the long-range character of the interaction. As
a result of the infinite number of possible embeddings on
the lattice for each graph, a conventional linked-cluster
expansion becomes problematic. At this point white graphs
are essential [37], since they allow us to extract the generic
linked contributions from graphs in a first step while the
embedding on a specific lattice is done only at the end of
the calculation. Here we perform the PCUT on each graph
by introducing different couplings λGj with j ∈ f1;…; ng
on the n links of G. The resulting linked contributions in
terms of the λGj are then embedded in the infinite system by
identifying the sites of graph G with the sites of the lattice
and therefore replacing λGj with the true interactions
λji − jj−α for each pair of sites i and j on the lattice. An
exemplary embedding is given in the Supplemental
Material [38]. In general, the embedding procedure leads
to the occurrence of nested infinite sums. In the most
complex nested sum in order k there are dk infinite sums,
where d is the dimension of the lattice. Here we calculated
series expansions of order 9 for Δ, which results in 18
nested sums for the most difficult terms. In total, a number
of 1068 different graphs have to be treated for each k and α.
Let us stress that these calculations are tremendously more
demanding compared to those in the one-dimensional
LRTFIM where a brute-force evaluation of the nested
sums up to order 8 is still feasible [31]. In two dimensions,
an analogue calculation would only reach order 4, which is
certainly not sufficient to extract quantum-critical proper-
ties of the LRTFIM. Substantial progress is therefore
needed to reach order 9, which we achieved by implement-
ing classical Markov-chain Monte Carlo (MCMC) integra-
tion techniques. The infinitely large configuration space of
embeddings is sampled in order to calculate the coefficients
ck of the gap series Δ ¼ P

9
k¼1 ckλ

k. Details on the
implementation and the performance of the MCMC cal-
culations are given in the Supplemental Material, which

FIG. 1. Illustration of the square (left) and triangular (right)
lattice with basis vectors e1 and e2.
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includes results for the long-range TFIM chain showing
the improved quality of our approach even for the one-
dimensional case [38]. For a given lattice, exponent α, and
momentum k, we sort the resulting nested sums of all
graphs in a given perturbative order by the number of sites
NG of the graphs. Then a separate MCMC calculation is
performed for each NG in every order from 1 to 9.
Effectively, the problem is reduced to the computation of
the classical partition function of an NG-mer with many-
body interactions with respect to a linear molecule. Joining
all contributions from the various MCMC calculations, we
obtain numerical estimates for the coefficients ck which are
given in Ref. [38]. The relative errors of these coefficients
are similar for both lattices, but slightly larger for the
antiferromagnetic cases. Most importantly, the numerical
uncertainty is small enough in the ck so that any conclusion
drawn below is not affected.
The final series of the gap have to be extrapolated in

order to extract quantum-critical properties of the LRTFIM.
As for the one-dimensional LRTFIM [31], we expect
second-order quantum phase transitions out of the high-
field quantum paramagnet so that the one-particle gap Δ
closes as ðλ − λcÞzν near the quantum-critical point λc.
Here, z is the dynamical and ν the correlation-length critical
exponent. The quantities λc and zν are then estimated by
dlogPadé extrapolation of the gap series. As error bars for
these quantities we use the standard deviation of non-
defective dlogPadé extrapolants. Further details of the
extrapolation and our error estimates are given in Ref. [38].
Results.—We apply our approach to the LRTFIM on the

square and triangular lattice, both for a ferromagnetic and
an antiferromagnetic Ising exchange. The main goal is to
determine the quantum phase diagram and to analyze the
universality classes as a function of α.
Ferromagnetic interaction.—In this case the LRTFIM is

in the 3D-Ising universality class for α → ∞ on both
lattices with a critical exponent zν ≈ 0.63 [47]. As a
function of α, a similar behavior as for the 1D LRTFIM
is expected [31,48], where the critical exponent zν varies
continuously in a certain range of α from 2D Ising to the
MF value zν ¼ 0.5. However, the boundaries in α of
continuously varying exponents are shifted to α ¼ 10=3
and α ¼ 6 [48]. In Fig. 2, we show our results for λc and zν
for both lattices (green and blue squares and triangles). We
also display MF results as in Refs. [34,38] (dot-dashed
lines) and the quantumMonte Carlo data point for α ¼ 3 on
the triangular lattice (red triangles) [34], which agrees well
with our data. For a large α ¼ 10 the critical value λc is
already very close to its nearest-neighbor correspondent.
Strengthening the longer-range couplings by reducing α
stabilizes theZ2-broken phase and λc decreases. In the limit
α → 2 the phase transition happens at λc → 0, while for
exactly α ¼ 2 the sums diverge and Eq. (1) becomes ill
defined. However, we stress that our results agree with MF
calculations (dot-dashed lines in Fig. 2) even in the regime

α ≤ 2.5, where the MF ansatz is expected to be quantita-
tively correct.
Next we discuss the behavior of zν. It is known that the

dlogPadé extrapolation slightly overestimates critical expo-
nents, since it ignores subleading corrections to the critical
behavior. As a consequence, for both lattices, the estimate
zν ≈ 0.65 for large α is about 3% too large compared to the
known value zν ≈ 0.63 [47] of the nearest-neighbor TFIM
[47,51]. In the opposite limit of small α, the critical
exponent zν approaches the MF value 0.5 confirming
the expected MF limit. In between we find an interesting
continuous variation of zν from the MF value to that of the
3D-Ising universality class. Note that we attribute the
deviations from 0.5, which is exactly known to be correct

FIG. 2. Critical point λc (upper panel) and exponent zν (lower
panel) are shown as squares (triangles) for the ferromagnetic
LRTFIM on the square (triangular) lattice. Error bars represent
the standard deviation of nondefective dlogPadé extrapolants.
Shaded areas correspond to MF (left) and nearest-neighbor (NN)
(right) universality, which are known exactly in these α ranges
[48]. Upper panel: Thick lines indicate the quantum-critical
points λc ¼ 0.16421 [49] (square lattice) and λc ¼ 0.105 [50]
(triangular lattice) for the nearest-neighbor TFIM. MF results are
given as dot-dashed lines and the quantum Monte Carlo data as
red triangles (see Ref. [34]). Lower panel: The upper (lower)
dashed (dot-dashed) line refers to zν ≈ 0.63 [47] (zν ¼ 0.5) of the
nearest-neighbor TFIM (in MF).
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for α ≤ 10=3 [48], to limitations of the extrapolation which
neglects the subleading multiplicative logarithmic correc-
tion p at α ¼ 10=3 (for a definition of p, see Ref. [38]).
Indeed, when extracting p for α ¼ 10=3 from the dlogPadé
extrapolation by fixing λc and zν ¼ 1=2 as for the one-
dimensional LRTFIM [31], we find p ¼ −0.17ð4Þ
[p ¼ −0.143ð7Þ] for the square [triangular] lattice. These
values are remarkably close to p ¼ −1=6, which is the
prediction for the 3D TFIM from perturbative renormaliza-
tion group and series expansions [52–56]. The quantum-
critical behavior induced by the long-range Ising interaction
can therefore effectively be understood in terms of the
nearest-neighbor TFIM in an effective spatial dimension.
Furthermore, we stress that the estimated critical exponents
agree extremely well on both lattices. This property can
be seen as a kind of metauniversality because the univer-
sality class of both models changes identically with the
parameter α.
Antiferromagnetic interaction.—Here we expect an

inherently different behavior not only with respect to the
ferromagnetic case but also when comparing both lattices.
Already in the nearest-neighbor limit α → ∞ one finds
two different universality classes, since the TFIM on the
triangular lattice displays 3D-XY universality due to the
strong geometric frustration resulting in a

ffiffiffi
3

p
×

ffiffiffi
3

p
order at

small fields [9,10]. On the square lattice, the long-range
Ising interaction introduces again frustration which is,
however, expected to be weaker. For both lattices there
is no MF limit for small values of α and it is therefore not at
all obvious how the quantum-critical behavior changes as a
function of α in these frustrated systems.
Our results for λc and zν are shown for both lattices in

Fig. 3. As expected, stronger competing interactions
introduced by decreasing α stabilize the quantum para-
magnet. We observe that the MCMC approach becomes
less reliable for α close to 2 for both lattices [38].
Furthermore, small α values lead to alternating series in
jλj with extremely large coefficients ck which are hard to
extrapolate (see also Ref. [38]). This results in rather large
error bars for α ≤ 3, as can be seen in Fig. 3. Consequently,
we only show results for α ≥ 2.5 [58].
As outlined above, limitations in the extrapolation

lead to a slightly overestimated zν for large α [10,51].
Decreasing α, zν stays almost constant and close to the
value of the nearest-neighbor TFIM for the investigated α
regime. However, the physics at smaller α is likely different
on both lattices. On the square lattice, we expect always the
same quantum phase transition between the polarized and
the Néel ordered state in the full range of α in a similar
fashion as deduced for the LRTFIM chain [32] due to the
following reasons. We do not find tendencies for a soft-
ening of other one-QP modes at different k [38], which
points against a second-order quantum phase transition to a
differently ordered state. The critical lines of a variational
calculation covering the polarized and the Néel phase [38]
is in better agreement with the corresponding PCUT

findings in the whole α range compared to the triangular
LRTFIM (see dot-dashed curves in Fig. 3). Finally, we
expect the pure long-range Ising model to be Néel ordered
for all α > 0. Our approach for the square lattice is
therefore dominantly limited by the increasing relative
error of the MCMC approach for α ≲ 2.5 [38]. On the
triangular lattice, in addition, the extrapolation becomes
problematic in the same α regime and we expect a different
physical scenario. Again, no indication for a gap closing
at a different k is observed [38]. Most likely, the
phase transition becomes first order and a stripe-ordered
state [38] is realized at small fields for α ≲ 2.5. Indeed,
tensor network calculations of the LRTFIM on cylinders
find a zigzag-stripe order for α≲ 2.4 [43] and the full
2D-Ising model displays straight-stripe order [39,40].

FIG. 3. Critical point λc (upper panel) and exponent zν (lower
panel) are shown as squares (triangles) for the antiferromagnetic
LRTFIM on the square (triangular) lattice. Error bars indicate the
standard deviation of nondefective dlogPadé extrapolants. Upper
panel: Thick lines correspond to λc ¼ −0.16421ð1Þ [49]
(λc ¼ −0.305 [9,10]) for the TFIM on the square (triangular)
lattice. Dot-dashed lines show MF results for the transition
between the polarized and Néel (left) and

ffiffiffi
3

p
×

ffiffiffi
3

p
(right) order.

Lower panel: Thick lines refer to the 3D-Ising exponent zν ≈ 0.63
[47] (left) and 3D-XY exponent zν ≈ 0.67 [57] (right). The dot-
dashed line refers to the MF exponent zν ¼ 0.5.
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Most importantly, the phase transition between the straight-
stripe order and the polarized phase is known to be first
order [39,41]. Consequently, our approach for the triangu-
lar lattice is primarily limited by the first-order nature of the
phase transition for α≲ 2.5, which cannot be tracked by
investigating gap closings.
Conclusions.—We investigated the largely unexplored

interplay of long-range interactions, quantum fluctuations,
and frustration in 2D quantum magnets directly in the
thermodynamic limit. This was achieved by a technical
breakthrough combining high-order series expansions with
classical MCMC calculations. The most challenging regime
is small α for the frustrated LRTFIMs. It would therefore
be desirable to further improve our approach by applying
other techniques to extrapolate the series [42,59] and by
developing optimized setups for the MCMC technique.
Combining our results with similar linked cluster expan-
sions inside the ordered phases could further help to locate
first-order phase transitions which we expect for the tri-
angular LRTFIM. Our approach works directly in the
thermodynamic limit and it does, a priori, not suffer from
a sign problem. It can therefore be applied to a large class of
interesting systemswith long-range interactions in the future
allowing the calculation of other physical quantities like
correlation functions or bound states between quasiparticles.

We gratefully acknowledge the computational resources
and support provided by the HPC group of the Erlangen
Regional Computing Center (RRZE).

Note added.—Recently, we became aware of the numerical
work by Saadatmand et al. [43] who studied the anti-
ferromagnetic triangular lattice LRTFIM on infinitely long
cylinders.
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