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We consider the ground-state energy and the spectrum of the low-energy excitations of a Majorana island
formed of topological superconductors connected by a single-mode junction of arbitrary transmission.
Coulomb blockade results in e-periodic modulation of the energies with the gate-induced charge. We find

the amplitude of modulation as a function of reflection coefficient R. The amplitude scales as
ffiffiffiffiffi
R

p
in the

limit R → 0. At larger R, the dependence of the amplitude on the Josephson and charging energies is
similar to that of a conventional-superconductor Cooper-pair box. The crossover value of R is small and
depends on the ratio of the charging energy to superconducting gap.
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The Coulomb blockade phenomenon is associated with
the localization of charge in a small conductor with
appreciable charging energy. The Coulomb blockade
results in the observable quantities being periodic functions
of the charge induced by an applied gate voltage. For a
normal system, this periodicity in the induced charge is e,
while for an island of conventional (s-wave) superconduc-
tor, a so-called Cooper-pair box, the periodicity is 2e.
With a junction between the island and a lead, charging

effects are smeared by delocalization of the electrons.
Remarkably, the Coulomb blockade is fully suppressed
by the presence of even a single reflectionless channel in
the junction [1]. Theway oscillations vanish depends on the
relevant low-energy excitations. For normal-state conduc-
tors, the spectrum is continuous and gapless; the effect of
weak reflection can be read off from known results for a
quantum impurity in a Luttinger liquid [2,3]. When the
island and the lead are s-wave superconductors, the ground
state is nondegenerate and separated from the continua by
gaps. In this case, the destruction of the Coulomb blockade
is described by an imaginary-time version of the Landau-
Zener diabatic crossing of two in-gap levels, with the
off-diagonal matrix element being proportional to the
backscattering amplitude [4].
In this Letter, we elucidate the nature of the suppression of

Coulomb blockade in a nearly open system made of
topological superconductors, illustrated in Fig. 1. The
topological superconductors are characterized by a finite
gap in the energy spectrum, coexisting with a nontrivial
degeneracy of the ground state, which causes the periodicity
in the induced charge to be e and not 2e. This difference in
the states and spectra from both conventional superconduc-
tors and normal metals results in a different underlying
physics of the disappearance of Coulomb blockade

oscillations at perfect transmission. We show that it is
related to the physics of diabatic transitions between a
discrete state and a continuum of itinerant states, and we
formulate a quantitative theory valid for the crossover from a
regime where the amplitude of Coulomb blockade oscil-
lations is proportional to the reflection amplitude to a regime
where the physics is similar to a conventional Cooper-pair
box [5].
The system shown in Fig. 1 has become experimentally

relevant since the appearance of viable theoretical models
of one-dimensional topological superconductors [6–9].
Several recent experiments reported data consistent with
topological superconductivity in Coulomb blockade devi-
ces [10–12], thus opening a perspective for the experi-
mental study of the quantum charge fluctuations considered
here. Moreover, topological superconducting islands have

FIG. 1. Two topological superconductors, hosting Majorana
zero modes γi, are connected by a single-channel junction with
reflection coefficient R. Capacitively coupled gate induces
average charge bias eN g ¼ CgVg.
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been the basis for several proposals for Majorana-based
qubits [13–16], some of which [13,14] use control of the
charging energy to lift the ground-state degeneracy. The
theory of such control is another application of our work.
The conventional transmon qubit is a Cooper-pair box

with the charging energy much smaller than the Josephson
energy. This arrangement is chosen to suppress charge
fluctuations and increase the coherence time of the qubit.
In the present work we focus on the case where the
charging energy EC is relatively small, EC ≪ Δ (here Δ
is the superconducting gap in the topological phase; it also
fixes the scale of the Josephson energy in the single-
channel junction), which is also the limit considered for a
conventional transmon [5]. We find that the gate-induced
charge eN g modulates the energy levels of the topological
transmon,

δEmðN gÞ ¼ ð−1Þmþ1
ϵm
2
cosð2πN gÞ; ð1Þ

where m labels the energy levels, with m ¼ 0 being the
ground state [17]; unlike the conventional transmon, the
modulation period is e. The charge sensitivity comes from
the Aharonov-Casher effect [18] in tunneling of the phase
variable φ between the classically equivalent minima
(φ ¼ 0; 4π in Fig. 2). The modulation amplitude ϵm is

ϵm ¼ FðhÞEC
24mþ3

m!

ffiffiffi
2

π

r �
EM

EC

�ð2mþ3Þ=4
e−4

ffiffiffiffiffiffiffiffiffiffiffi
EM=EC

p
: ð2Þ

Here EM ¼ Δ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −R

p
is the height of the barrier separating

the two minima of the ground-state energy in the absence of
charging, andR is the reflection coefficient. Apart from the
function FðhÞ, Eq. (2) closely resembles the respective
formula [5] for a conventional transmon. It is valid if the
electron system is able to adjust to the instantaneous values
of φ in the course of tunneling. Such adiabaticity requires a
sufficiently large value of the reflection coefficient R. The
function FðhÞ describes the crossover between the diabatic
and adiabatic regimes:

FðhÞ ¼ 31=6

22=3
Γð2=3Þh ≈ 1.02h; h ≪ 1; ð3Þ

FðhÞ ¼ 1 −
π

8
h−3 ≈ 1 − 0.39h−3; h ≫ 1: ð4Þ

It depends on a single variable:

h ¼
�

Δ
16EC

�
1=6 ffiffiffiffiffi

R
p

: ð5Þ

We first note that Fð0Þ ¼ 0, i.e., in the absence of reflection
δEm ¼ 0, in agreement with the general properties
[2–4,19,20] of the Coulomb blockade effect discussed in
the introduction. Below, we derive Eqs. (1)–(5) and

show that the entire crossover from FðhÞ→0 to FðhÞ→1

occurs in a narrow region of reflection coefficients, R ∼
ð16EC=ΔÞ1=3 ≪ 1 [21].
At zero charging energy, phase φ across the junction is a

good quantum number. Assuming that only one pair of
helical modes propagates across a short junction, the phase-
dependent part of the ground-state energy in the sector with
an even number of electrons takes the form [6,22]

EGðφÞ ¼ −
1

2
EM cosðφ=2Þ: ð6Þ

Here the sign is fixed by the total parity, which we assume
to be conserved. Furthermore, in a ballistic junction
(R ¼ 0), the momentum associated with the propagating
modes is conserved. The bound states are formed out of
states of one chirality: these are, respectively, the right
movers at 0 < φ < 2π and left movers at 2π < φ < 4π,
cf. the solid (red) and bold dashed (black) curves in Fig. 2.
The two bound states become degenerate with each other
and with the edge of the continuum at φ ¼ 2π. In the
presence of backscattering induced by any finite R, both
left and right movers participate in the formation of the
continuum and bound states. As a result, the degeneracy is
lifted, and the gap between the ground state and continuum,
1
2
ðΔ − EMÞ, is finite at φ ¼ 2π.
Finite charging energy endows the phase with quantum

dynamics; the same-parity, classically distinguishable
states corresponding to φ ¼ 0; 4π;… may hybridize. The
hybridization does not occur at R ¼ 0, as these states are
protected by the movers’momentum conservation, but they
do hybridize atR ≠ 0. At small charging energy, EC ≪ Δ,
one may view the hybridization as the result of phase
tunneling between the nearest minima (φ ¼ 0; 4π in Fig. 2).
If the gap 1

2
ðΔ − EMÞ is large enough, phase tunneling

occurs in the adiabatic regime and is governed by the
Hamiltonian

H0 ¼ ECð−2i∂φ −N gÞ2 þ EGðφÞ ð7Þ

FIG. 2. Energy spectrum of a topological junction in the
absence of backscattering. At R ¼ 0, the bound states are
degenerate at φ ¼ 2π mod 4π with the edge of continuum
(shaded area).
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acting in the space of 4π-periodic functions. Here N̂ ¼
−2i∂=∂φ is the operator for the electron number of the
island. To find the energy spectrum of H0 as a function of
N g, we map the problem onto the known one for the
conventional transmon [5] and find Eq. (2) with FðhÞ
replaced by 1 (see Secs. I and VIII of Ref. [23] for details).
The adiabatic approximation fails if the gap 1

2
ðΔ − EMÞ

is small. The corresponding quantum dynamics of the
many-body state in the topological case is very different
from that in the conventional s-wave case [4]. Disregarding
for a moment the difference between driving the variable φ
classically and allowing it to tunnel, one may say that the
conventional problem is related to the Landau-Zener
passage of an avoided crossing between two discrete
many-body states. On the contrary, Coulomb blockade in
the topological junction is related to a Demkov-Osherov
process involving a discrete state and continuum [24].
We may estimateR at which adiabaticity is violated by a

qualitative consideration that ignores the difference
between the real-time evolution and tunneling of the phase
(i.e., “imaginary-time” evolution) across the φ ¼ 2π point.
The separation EexðθÞ of the bound state energy from
continuum is small at R ≪ 1 and jφ − 2πj ≪ 1; using
Eq. (6), we find (hereinafter, θ ¼ φ − 2π)

EexðθÞ ¼
1

4

�
Rþ θ2

4

�
Δ: ð8Þ

The energy EexðθÞ can be estimated as Eexðθ�Þ ∼RΔ
everywhere within the interval jθj≲ θ�, where θ� ¼ ffiffiffiffiffi

R
p

.
In the (imaginary) time domain, it takes time τðθ�Þ ∼
θ�=ωP to pass this interval; here ωP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ECEM
p

≈
ffiffiffiffiffiffiffiffiffiffi
ECΔ

p
is

the Josephson plasma frequency which determines the
timescale for both oscillations and tunneling of the phase.
The phase is passing the point θ ¼ 0 adiabatically if
Eexðθ�Þτðθ�Þ ≫ 1. Under that condition, the electron sys-
tem adjusts to the instantaneous value of φ and the use of
the Hamiltonian Eq. (7) at any φ is justified. Expressing
Eexðθ�Þ and τðθ�Þ in terms ofR and utilizing the definition
Eq. (5), we find that the adiabaticity is violated at h ∼ 1,
which indeed is the crossover scale for the function
FðhÞ, cf. Eq. (2).
To quantify the crossover behavior, we notice that Eq. (7)

determines the dynamics of the many-body state in the
Born-Oppenheimer (adiabatic) approximation with φ being
the slow variable. In that approximation, the eigenfunction
of the system is factorized, Ψðfxig;φÞ ≈ ΨφðfxigÞψðφÞ.
The first factor here is the many-body BCS wave function
of the electron ground state at a given phase φ. The phase-
dependent part of the corresponding energy, EGðφÞ,
appears in Eqs. (6) and (7). The single-particle states
comprising ΨφðfxigÞ are defined by the Bogoliubov–
de Gennes equations where φ is treated as a parameter.
The second factor, ψðφÞ, is an eigenfunction of Eq. (7). If
R ≫ ðEC=ΔÞ1=3 (i.e., h ≫ 1), then the Born-Oppenheimer

wave function is a good leading-order approximation at all
φ. In the opposite case, h ≪ 1, we use the condition
EexðθÞτðθÞ≳ 1 to determine the range of φ (within the
period ½0; 4π�), where the adiabatic approximation is
applicable. That yields jφ − 2πj ≳ ðEC=ΔÞ1=6. Our strategy
is to find Ψðfxig;φÞ in the region jφ − 2πj ≪ 2π by a
method inspired by the Demkov-Osherov approach [24]
and then match the found Ψðfxig;φÞ with the Born-
Oppenheimer wave function in the common region of
applicability ðEC=ΔÞ1=6 ≲ jφ − 2πj ≪ 2π. Knowing the
wave functions in the entire interval ½0; 4π� allows us to
find the dependence of energy spectrum on N g.
To illustrate the strategy, we concentrate on finding

δE0ð0Þ, cf. Eq. (1). In the vicinity of φ ¼ 0, the function
ψðφÞ is well approximated by the eigenstate of a harmonic
oscillator:

ψðφÞ ¼ ðΔ=ECÞ1=8
ð8πÞ1=4 exp

�
−
φ2

16

ffiffiffiffiffiffi
Δ
EC

s �
: ð9Þ

Next we extend Eq. (9) to the apex of the classically
forbidden region, 2π ≫ 2π − φ ≫ max½ ffiffiffiffiffi

R
p

; ðEC=ΔÞ1=6�,
by using the WKB approximation. This yields

ψðθÞ ¼ ðΔ=ECÞ1=8
ð2πÞ1=4 e−2

ffiffiffiffiffiffiffiffiffi
Δ=EC

p
exp

�
−
θ − θ3=96

2
ffiffiffiffiffiffiffiffiffiffiffiffi
EC=Δ

p �
: ð10Þ

Clearly, the exponentially small factor in Eq. (10) does
not affect the normalization factor in Eq. (9). The extension
of Eqs. (9) and (10) to arbitrary N g and for the entire
classically forbidden region is given in Secs. I–III of
Ref. [23].
Finding the many-body state is simplified by the

observation that the phase-dependent energy EGðφÞ of a
short junction comes from one single-particle bound state
(the latter is formed by two Majorana states γ2, γ3
hybridized across the junction; see Fig. 1). That allows
us to replace fxig by a single generalized coordinate,
Ψðfxig;φÞ → Ψðx; θÞ. In the vicinity of θ ¼ 0, the activa-
tion energy of the bound state becomes small; see Eq. (8).
That further simplifies the problem, as the relevant states
are linear combinations of quasiparticle wave functions
with energies close to Δ. Similar to the effective mass
approximation in the theory of semiconductors [25], we
construct an effective Hamiltonian [26,27],

Heff ¼ 4ECð−i∂θ −N g=2Þ2

þ 1

2

�
v2F
2Δ

ð−i∂xÞ2 − vF

�
θ

2
σ̂z þ

ffiffiffiffiffi
R

p
σ̂x

�
δðxÞ

�
þ Δ

2
;

ð11Þ

here σ̂x;y;z are Pauli matrices in the space of right- or left-
propagating states and vF is the Fermi velocity (it drops out
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from final results). The divergent-at-the-gap density of
states and energy EexðθÞ are correctly described by Heff ;
see Sec. IV in Ref. [23]. Note that ½σ̂z; Heff � ¼ 0 at R ¼ 0,
and the bound states at θ > 0 and θ < 0 belong to
orthogonal subspaces. Therefore, at R ¼ 0 there is no
tunneling between the φ ¼ 0; 4π minima, consistent with
momentum conservation.
As we are interested in states with energy E ≈ −Δ=2 (see

Fig. 2), the problem can be further simplified by factoring
out the leading (linear in θ) exponential term in the wave
function and replacing x and θ by dimensionless variables y
and z:

Ψðx; θÞ ¼ expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ=4EC

p
θÞΨðy; zÞ;

x ¼ 2−2=3ðΔ=ECÞ1=6ðvF=ΔÞy;
θ ¼ 25=3ðEC=ΔÞ1=6z: ð12Þ

In the new variables, the Schrödinger equation for Ψðy; zÞ
atN g ¼ 0 depends on a single parameter h given by Eq. (5)
(see also Sec. V of Ref. [23]):

�
∂z −

1

2
∂2
y − ðzσ̂z þ hσ̂xÞδðyÞ

�
Ψðy; zÞ ¼ 0: ð13Þ

Its solution in the Born-Oppenheimer approximation,

Ψð0Þðy;zÞ¼ψ ð0Þ
z ðyÞgð0ÞðzÞÛðzÞχ;

ψ ð0Þ
z ðyÞ¼21=3

�
EC

Δ

�
1=12

�
Δ
vF

κz

�
1=2

e−κzjyj;

gð0ÞðzÞ¼ðΔ=ECÞ1=8
ð2πÞ1=4 e−2

ffiffiffiffiffiffiffiffiffi
Δ=EC

p
exp

�
1

2

Z z

0

dz0κ2z0
�
; ð14Þ

reproduces Eq. (10) in its region of validity [upon returning
from gð0ÞðzÞ to ψðθÞ]. Here κz ¼ ðz2 þ h2Þ1=2, pseudospi-
nor χ is an eigenvector, σ̂zχ ¼ χ, and the unitary operator,

ÛðzÞ ¼ exp

�
−
i
2
cot−1

�
−
z
h

�
σ̂y

�
; ð15Þ

rotates it to align with the z-dependent quantization axis.
The rotation rate in Eq. (15) scales as 1=h; obviously, the

adiabatic approximation fails at h ≪ 1. We develop per-
turbation theory in h to find the energy eigenvalues in this
limit. At h ¼ 0, we can take advantage [24] of the linear z
dependence of a coefficient in Eq. (13) and solve the partial
differential equations for σz ¼ �1 analytically. For that, we
apply the Fourier transformation to Eq. (13),

ðipþ k2=2Þψσzðk; pÞ ¼ −σzi∂pFσzðpÞ;

FσzðpÞ≡
Z ∞

−∞

dk
2π

ψσzðk; pÞ; ð16Þ

which allows us to obtain a closed first-order differential
equation for FσzðpÞ,

−iσz½e−iπ=4=ð2pÞ1=2�∂pFσzðpÞ ¼ FσzðpÞ ð17Þ

(p1=2 > 0 for p > 0). Solution of Eq. (17) followed by
inverting the Fourier transform ψσzðk; pÞ of Eq. (16) yields

ψ−1ðy;−zÞ
¼ ψ1ðy; zÞ
¼ 27=12π1=4e−2

ffiffiffiffiffiffiffiffiffi
Δ=EC

p
ðΔ=ECÞ1=24ðΔ=vFÞ1=2

×
Z ∞

−∞

dp
2π

exp

�
ipz − ð2ipÞ1=2jyj þ 2

3
iðiþ 1Þp3=2

�
:

ð18Þ

The constant of integration here is found by matching
the jzj ≫ 1, z < 0 asymptote of Eq. (18) with the Born-
Oppenheimer limit, Eq. (14). Knowing the wave functions
Eq. (18) at h ¼ 0, we may express the first-order correction
to energy in terms of the matrix element of perturbation,
hψ−1ðy; zÞjhσ̂xδðyÞjψ1ðy; zÞi:

ϵ0¼ 28=3vF
ffiffiffiffiffi
R

p
ðEC=ΔÞ1=6

Z ∞

−∞
dzψ�

1ð0;zÞψ−1ð0;zÞ: ð19Þ

Performing the integration with the help of Eq. (18),
we arrive at the asymptote Eq. (3); see also Sec. VI
of Ref. [23].
In the opposite case, h ≫ 1, we find correction Eq. (4) by

perturbing away from the adiabatic limit, Eq. (14). The

correction stems from the perturbations ∂zÛðzÞ; ∂zψ
ð0Þ
z ∝

1=h appearing in Eq. (13) upon substitution of Eqs. (14)
and (15) in it. We are interested in the correction which
vanishes at z → −∞ and modifies the asymptote of the
adiabatic, localized in y, solution at z ≫ 1. The perturba-
tions, effective in the region jzj≲ h, mix the localized
state with the itinerant ones, differing in energy by ∼h2.
Therefore, the modification of the localized state Ψð0Þðy; zÞ
appears in the second-order perturbation theory. The power
counting thus gives þ1 from the term in the Hamiltonian,
−2 from the second-order perturbation theory, and −2 from
the energy cost giving the correction ∝1=h3. The evaluation
of the numerical coefficient appearing in Eq. (4) is
presented in Sec. VII of Ref. [23].
The interpolation between the diabatic and adiabatic

asymptotes of FðhÞ is shown in Fig. 3. It is obtained by
generalizing Heff to arbitrary phases with the help of
substitution θ=2 → 2 sinðθ=4Þ in Eq. (11). The generalized
Hamiltonian, being projected at R ≪ 1 on its low-energy
sector, reproduces Eq. (7) in the region of phases
jθj ≫ ðEC=ΔÞ1=6. By finding numerically the energy spec-
trum of that Hamiltonian, we get the relative amplitude of
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the gate modulation F as a function of two parameters R
and EC=Δ (see details in Sec. IX of Ref. [23]). The results
at the lowest values of EC=Δ are compatible with F
depending on a single parameter,

ffiffiffiffiffi
R

p ðΔ=ECÞ1=6 ∝ h,
and having asymptotes Eqs. (3) and (4).
To conclude, we addressed the problem of the crossover

from a pronounced charging effect to its full absence in a
topological superconducting junction upon reduction of the
reflection coefficient R. The many-body problem was
reduced to that of tunneling of a system with a few degrees
of freedom—charge and coordinate of an effective particle
fluctuating between the state localized in the junction and
scattering states in the continuum. The reduction allowed
us to find the full crossover function FðhÞ. The control
parameter h depends weakly on Δ=EC, so that h ≈
ð0.6–1.1Þ ffiffiffiffiffi

R
p

for Δ=EC ¼ 1–25. The function FðhÞ is
well approximated by a linear dependence for F ≲ 0.5;
in this range, FðhÞ ∼ ffiffiffiffiffi

R
p

for typical values of Δ=EC.
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