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Despite topological protection and the absence of magnetic impurities, two-dimensional topological
insulators display quantized conductance only in surprisingly short channels, which can be as short as
100 nm for atomically thin materials. We show that the combined action of short-range nonmagnetic
impurities located near the edges and on site electron-electron interactions effectively creates noncollinear
magnetic scatterers, and, hence, results in strong backscattering. The mechanism causes deviations from
quantization even at zero temperature and for a modest strength of electron-electron interactions. Our
theory provides a straightforward conceptual framework to explain experimental results, especially those in
atomically thin crystals, plagued with short-range edge disorder.
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Introduction.—Research on spin-orbit coupling in gra-
phene led Kane and Mele [1,2] to predict the existence of
two-dimensional (2D) topological insulators (TIs). These
are electron systems with a gap in the bulk density of
states (DOS) and pairs of conducting edge states display-
ing helicity, i.e., spin-momentum locking. Because of
Kramers theorem, in the absence of many-particle effects
nonmagnetic impurities in a 2DTI cannot induce back-
scattering at a 2DTI edge, yielding conductance quanti-
zation against elastic disorder [3–8].
All experimental measurements on 2DTIs, however, show

deviations from the expected quantized value of conductance
2e2=h, particularly in small-gap semiconductor heterostruc-
tures such as HgTe/CdHgTe and InAs/GaSb quantum wells
[9–13], but also in atomically thin crystals such as WTe2
[14,15]. On the other hand, the existence of conducting edge
modes was clearly demonstrated via nonlocal measurements
in Refs. [10–13]. Semiconducting heterostructures were
extensively studied in the low-temperature regime (below
4 K) [9,13] because of their small energy gap. For channel
lengths L shorter than ∼1 μm, fluctuations of the conduct-
ance around the quantized value 2e2=h were observed as a
function of the back gate voltage. For longer channels, even
the average conductance was found to deviate from 2e2=h
and even totally suppressed [16], when the edge was
perturbed by a scanning tip. Among the 2DTIs realized by
semiconducting heterostructures, the best results were
obtained thanks to Si doping [13]. In these samples,
conductance is quantized up to 1%–2% at very low temper-
atures. Monolayers of WTe2 exhibit [14] conductance
quantization up to 100 K, making them the 2DTIs existing

at the highest temperatures up to date, though displaying
quantization only in short channels (L≲ 100 nm).
The cause of the breakdown of conductance quantiza-

tion is still poorly understood. Clearly, one possibility is
the presence of an external magnetic field [9,14] or of
magnetic impurities [17–19], which induce spin-flip
scattering (thus backscattering). Magnetic impurities,
however, are rare both in materials grown by molecular
beam epitaxy [9–13] and in mechanically exfoliated
crystals [14,15], but explain experimental data in the
“extrinsic” case in which magnetic dopants are deliber-
ately added to pristine three-dimensional TI samples
[20,21]. Coupling between opposite edges, in very narrow
samples or in purposely fabricated point contacts, can also
induce backscattering [22–24], with no need of time-
reversal symmetry breaking. Importantly, the breakdown
of conductance quantization could arise from two-body
interactions. In Ref. [3], it was suggested that electron-
electron (e-e) interactions in 2DTIs can cause backscat-
tering through a third-order perturbation-theory scattering
process, whereas the spontaneous breaking of time-rever-
sal symmetry due to interactions was studied in Ref. [25].
Interactions are also at the core of other mechanisms
proposed to explain the spoiling of conductance quanti-
zation in 2DTIs. Backscattering resulting from weak e-e
interactions and an impurity potential, in the absence of
axial spin symmetry, was considered in Ref. [26].
Deviations from 2e2=h were found to scale like T4, at
low temperatures T. The coupling of edge modes to
charge puddles, naturally present in real samples, was
accounted for in Refs. [27,28] and found to lead to a
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correction to the conductance scaling like T4 at low
temperatures. In contrast, recent experiments [14] show
nearly temperature-independent conductance in 2DTIs.
Another mechanism that leads to the breakdown of con-
ductance quantization is related to the edge reconstruction
[29], which can occur when the confining potential of the
2DTIs edges is not sufficiently sharp. Finally, the effects of
Rashba spin-orbit coupling [30,31], phonons [32], nuclear
spins [33,34], disordered probes [35], coupling to external
baths [36], and noise [37] have also been analyzed.
In this Letter, we propose a simple mechanism, based on

the interplay between nonmagnetic scatterers and e-e
interactions, which leads to the breakdown of conductance
quantization in 2DTIs, even at zero temperature, and can
result in the total suppression of the conductance. Starting
from the single-particle Kane-Mele Hamiltonian [1,2]
describing a 2DTI ribbon, we consider the presence of
short-range nonmagnetic impurities at its edges (see Fig. 1).
As expected, this leads to an enhancement of the local
DOS, as in the case of midgap states in graphene [38] and
three-dimensional TIs [39–41]. In the presence of Hubbard-
like e-e interactions, using the self-consistent unrestricted
Hartree-Fock method, we show that these short-range
defects favor the formation of local magnetic moments,
leading to the spontaneous breakdown of time-reversal
symmetry and backscattering.
Theoretical model.—We consider the Kane-Mele-

Hubbard model [42,43],

H ¼ t
X

hiji;α
c†iαcjα þ iλ

X

hhijii;α;β
νijc

†
iασ

z
αβcjβ

þU
X

i

c†i↑ci↑c
†
i↓ci↓: ð1Þ

In Eq. (1), c†iαðciαÞ creates (destroys) an electron of spin α
on the i-th site of a honeycomb lattice and σz is a 2 × 2
Pauli matrix acting on spin space. The sums over hijiðhhijiiÞ
are intended between i and j being first (second) neighbors.
The parameters t and λ are hopping energies between first

and second neighboring sites, respectively. The second
term in Eq. (1) was introduced by Kane andMele [1,2] as a
time-reversal invariant version of the Haldane model [44]
and is responsible for the existence of helical edge modes.
The factor νij is equal to �1, with νji ¼ −νij, depending
on the orientation of the two nearest-neighbor bonds the
electron traverses in going from site j to i: νij ¼ −1ðþ1Þ if
the electron reaches the second neighbor going (anti-)
clockwise. The last term accounts for local e-e repulsive
interactions. Such a two-body term will be treated within
mean-field theory. The key point here is that we are not
interested in dealing accurately with strong correlations in
2DTIs [43]. Our aim is to utilize the simplest approach that
enables us to capture an important effect stemming from
local e-e interactions in the weak-coupling U=t < 1
regime. In this regime, mean-field theory is expected to
be accurate and allows us to obtain an effective single-
particle Hamiltonian, which can be used in combination
with Landauer-Büttiker theory [45] to compute transport
properties.
We consider a ribbon extending in the region 0 ≤ x ≤ L,

0 ≤ y ≤ W, with armchair edges and periodic boundary
conditions in the x̂-direction (see Fig. 1). In order to
investigate the effect of atomic-scale defects, we assume
the presence of one or two vacancies, which can be
accounted for by dropping from the sums in Eq. (1) terms
involving the lattice sites where the atoms are missing. The
case of many vacancies can be tackled in a straightforward
manner but lies beyond the scope of this Letter. Our main
point, here, is to demonstrate the importance of local e-e
interactions in dressing short-range nonmagnetic impurities
in a magnetic fashion.
Using the usual Hartree-Fock decoupling [46], we can

express Eq. (1) in the unrestricted Hartree-Fock approxi-
mation [47,48] as

H ≃ t
X

hiji;α
c†iαcjα þ iλ

X

hhijii;α;β
νijc

†
iασ

z
αβcjβ

þU
2

X

i;α;β

c†iαðni1αβ −mi · σαβÞciβ

−
U
4

X

i

ðn2i − jmij2Þ; ð2Þ

where 1 is the 2 × 2 identity matrix, σ ¼ ðσx; σy; σzÞ is a
vector of 2 × 2 Pauli matrices acting on spin space, and we
have defined the local mean electron density as

ni ¼
�X

α

c†iαciα

�
; ð3Þ

and the local mean spin polarization si ¼ ℏmi=2 ¼
ℏðmx

i ; m
y
i ; m

z
i Þ=2 with

mi ¼
�X

α;β

c†iασαβciβ

�
; ð4Þ

FIG. 1. A cartoon of the physical process introduced and
analyzed in this Letter. At an edge of a 2DTI, a nonmagnetic
short-range impurity can effectively act as a magnetic one due to
its dressing via on site electron-electron interactions. The latter
favor the formation of a local magnetic moment with non-zero in-
plane components. These cause spin mixing and hence back-
scattering.
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whichmust be determined self-consistently. In order to do so,
we use an iterative algorithm [49] which involves the exact
diagonalization of the Hamiltonian (2). Our calculations
were performed at T ¼ 0, but can easily be extended to finite
temperature. Technicalities are reported in the Supplemental
Material [50]. For λ ¼ 0, i.e., when the second neighbor
hopping term is neglected, the lattice is bipartite in the sense
of Ref. [51] and Lieb theorem holds, so that a non-zero
ground-state spin polarization rigorously follows from sub-
lattice imbalance (i.e., different number of sites in the two
sublattices). As we will see below, a ground-state spin
polarization occurs even for λ ≠ 0—i.e., in the topological
phase of Eq. (1) with gap δg ¼ j6 ffiffiffi

3
p

λj [2]—where Lieb
theorem does not apply. All numerical results below refer
to a rectangular sample with L ¼ 45ð ffiffiffi

3
p

=2Þa and width
W ¼ 25a.
Ground-state spin polarization.—In Fig. 2, we plot the

spatial profile of the three components—mx
i , top panel, my

i ,
central panel, and mz

i , bottom panel—of the dimensionless
spin polarization (4), calculated at half filling for λ=t ¼ 0.09
and U=t ¼ 0.1, when a single vacancy is placed at x ¼
23ð ffiffiffi

3
p

=2Þa and y ¼ a, where a is the lattice parameter.
The ground-state electron density ni turns out to be nearly
uniform.
The results show that spin polarization occurs around the

vacancy, being vanishing elsewhere with the exception of
asymmetric tails extending throughout the edge. This
nicely agrees with the Stoner criterion, stating that a
ground-state magnetization can occur in presence of a
peak in the DOS. Indeed, a short-range defect generally
hosts bound states localized around it, leading to an
enhancement of the local DOS in proximity of the defect.
It is interesting to note that a finite spin polarization is

bound to atomic-scale imperfections. Away from the
vacancy the sample displays zero spin polarization. We
thus expect that short-range edge roughness, which natu-
rally occurs, e.g., in atomically thin crystals [14,15], as well
can in general lead to interaction-induced spin polarization.
We now move to analyze its effects on the transport
properties of the system.
Breakdown of conductance quantization.—Because of

spin-momentum locking, backscattering is induced by
spin-flip events, which, in turn, are induced by the terms
proportional to mx

i and my
i in Eq. (2). Once the mean-field

theory parameters ni and mi are obtained, the conductance
of the sample in a two-terminal setup (where one lead is
attached to the left and the other to the right) can be
calculated within the Landauer-Büttiker formalism [45]. In
particular, at zero temperature, the differential conductance
G is given by G ¼ ð2e2=hÞT , T being the transmission
coefficient. Quantization of conductance is a consequence
of T being an integer number. We have calculated T as a
function of energy E for the mean-field Hamiltonian (2)—
with ni and mi calculated self-consistently—by utilizing

the toolkit “KWANT” [52]. The leads are defined by the
same Hamiltonian (2) with mi ¼ 0 and ni uniform and
equal to 1 (corresponding to half filling) for every i.
Figures 3 and 4 show the transmission coefficient T as a

function of energy E (E ¼ 0 denotes the energy at which
the edge-mode dispersions cross in the leads) in the
presence of one and two vacancies, respectively, and for
different values of U=t. According to Fig. 3, relative to a
single vacancy placed at x ¼ 23ð ffiffiffi

3
p

=2Þa and y ¼ a, T < 2
(thus conductance quantization is spoiled) for E ≈ 0. In
particular, pairs of sharp dips appear where backscattering
is maximum and T takes its minimum value, i.e., T ≃ 1
due to the presence of an unperturbed propagating mode on
the opposite edge of the sample. The main effect of
increasing U from 0.1t to 0.5t is an enhancement of the
separation between the dips, while the value of T between
the dips is slightly suppressed (by a few percent) with

FIG. 2. Interaction-induced spin polarization near a vacancy.
Color plot of the three components of the spatial profile of the
dimensionless spin polarization mi around a vacancy located at
x ¼ 23ð ffiffiffi

3
p

=2Þa and y ¼ a. Top panel: mx
i . Central panel: m

y
i .

Bottom panel:mz
i . From Eq. (2), it is clear that the components of

mi lying on the x̂ − ŷ plane are those leading to spin mixing and
hence backscattering. Numerical results in this figure have been
obtained by setting λ=t ¼ 0.09 and U=t ¼ 0.1.
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respect to T ¼ 2, virtually independently of U. For larger
values of U, for example at U ¼ 0.8t, T is much more
affected presenting, apart from the pairs of dips, a sensible
suppression in a larger range of energies. A few remarks are
in order here. First, due to the approximate particle-hole
symmetry of the model (1) at λ=t ≪ 1, the transmission is a
nearly perfectly even function of E. As already noted, the
transmission is never below 1 because the unperturbed edge
mode on the opposite side of the ribbon is perfectly
conducting. Notice that at the energies where the dips
occur the transmission relative to one edge mode nearly
vanishes. Nearly total suppression of the conductance in a
2DTI was experimentally observed in Ref. [16]. Because
the sample displays a finite spin polarization only around
the impurity and the edge-mode wave functions decay
exponentially away from the edge, the detrimental effects
of a vacancy on G rapidly vanish as this is moved toward
the center of the sample [50].
The behavior of T for U=t ≪ 1 can be understood by

solving the problem of a magnetic δ-like impurity [53,54]
at a single edge. In this regime, the dips in T ðEÞ can be
parametrized [50] by a Breit-Wigner dependence on E.
Accordingly, such dips can be explained as antiresonances
resulting from the localization of an electron around the
impurity. Local DOS calculations [50] show that at the
energy E ¼ �Ea of the dips the local DOS peaks around
the impurity. This suggests that an electron with energy
E ¼ �Ea traversing the sample gets localized in the bound
state around the impurity and scattered back after a waiting
time, which is inversely proportional to the width of the
Breit-Wigner function.

Figure 4 shows the transmission calculated in the
presence of two vacancies. We clearly see that T is much
more affected by the vacancies with respect to the case of a
single vacancy, being suppressed in larger ranges of energy
even in the weak-coupling regime. Moreover, for U ¼ 0.8t
the transmission relative to one edge mode is suppressed to
zero for −0.1t < E < 0.1t.
Summary and discussion.—We have shown that the

combined action of short-range nonmagnetic impurities
and on site e-e interactions in two-dimensional topological
insulators leads to strong backscattering.
Strong deviations from quantization occur even in the

zero-temperature limit. In contrast, all other theories [25–28]
including e-e interactions yield deviations of the conduct-
ance from its quantized value, which vanish rapidly (i.e., like
Tα with α ≥ 4) as a function of temperature T in the low-
temperature limit. These deviations, scaling as power laws of
T, arise because of scattering processes induced by e-e
interactions. In the present Letter, on the other hand, we have
shown that the ground state of the Kane-Mele-Hubbard
model displays a T ¼ 0 quantum phase transition from a
paramagnetic to a magnetic state if short-range impurities
and on site e-e interactions are taken into account. It is
because of this ground-state quantum phase transition that
our corrections to conductance quantization do not scale to
zero in the T → 0 limit. Ground-state edge reconstruction
due to e-e interactions [29] also operates down to T ¼ 0 but
applies only to samples with smooth confining potentials.
For example, for a Bernevig-Hughes-Zhang model applied
to a HgTe/CdHgTe quantum well [4], edge reconstruction
occurs [29] for confining potentials that decay slower than
13 meV=nm. Although certainly relevant for samples with
smooth edges, the scenario of edge reconstruction is not
expected to apply to atomically thin crystals [14,15], which
possess sharp edges created either naturally by mechanical
exfoliation or deliberately by etching.
In our theory, large deviations from quantization occur

also in the weak-coupling U=t < 1 regime, where our

FIG. 4. Same as in Fig. 3 but for the case of two vacancies
placed at x ¼ 23ð ffiffiffi

3
p

=2Þa, y ¼ ð3=2Þa and x ¼ 26ð ffiffiffi
3

p
=2Þa,

y ¼ ð1=2Þa.

FIG. 3. Breakdown of conductance quantization for a single
vacancy at the edge of a 2DTI. The transmission T is plotted
as a function of energy E (in units of t) at half filling and for
energies lying in the gap δg. Different curves refer to different
values of U=t. Numerical results in this figure have been
obtained by setting λ=t ¼ 0.09 (δg ≃ 0.93t). Because on site e-e
interactions produce a spin polarization with in-plane compo-
nents near the vacancy, backscattering events occur at the same
2DTI edge and lead to the breakdown of conductance quan-
tization, i.e., T < 2.
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mean-field theory is expected to be accurate. In this case,
the suppression of transmission as a function of energy can
be interpreted in terms of antiresonances stemming from
the time spent by an electron in the bound states formed
near short-range impurities, before is backscattered due to
spin-flipping terms in Eq. (2).
The formation of local magnetic moments in the pres-

ence of short-range impurities and on site e-e interactions is
a general feature of bipartite lattices [38,51], for which the
spectrum is particle-hole symmetric. Deep in the gap, any
topological insulator possesses approximate particle-hole
symmetry around the energy at which the edge modes
cross. We have shown that small deviations from exact
particle-hole symmetry (e.g., due to λ ≠ 0 in our model) do
not spoil the formation of local magnetic moments near
short-range impurities. Furthermore, the same happens
with the addition of Rashba spin-orbit coupling, which
introduces extra terms breaking the exact particle-hole
symmetry of (1) at λ ¼ 0, as shown in the Supplemental
Material [50]. We therefore expect that the spontaneous
formation of local magnetic moments near short-range
impurities induced by on site e-e interactions is a general
feature of 2D topological insulators. In any event, recent
Letter [55] has shown that a naturally occurring layered
mineral (jacutingaite) realizes the Kane-Mele model.
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