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We propose the concept of a “hybridization-switching induced Mott transition” which is relevant to a
broad class of ABO3 perovskite materials including BiNiO3 and PbCrO3 that feature extended 6s orbitals
on the A-site cation (Bi or Pb), and a strong A-O covalency induced ligand hole. Using ab initio electronic
structure and slave rotor theory calculations, we show that such systems exhibit a breathing phonon driven
A-site to oxygen hybridization-wave instability which conspires with strong correlations on the B-site
transition metal ion (Ni or Cr) to trigger a Mott insulating state. This class of systems is shown to undergo a
pressure induced insulator to metal transition accompanied by a colossal volume collapse due to ligand
hybridization switching.

DOI: 10.1103/PhysRevLett.122.016404

Recent advances in transition metal oxides have led to a
renewed interest in correlation driven metal-insulator tran-
sitions (MITs) [1–9]. Such MITs have been extensively
explored in the ABO3 perovskite family of materials, in
which the A-site and B-site cations live on interpenetrating
(nominally) cubic lattices. In typical perovskites, the A-site
ion is passive, while the B-site transition metal (TM) ion
actively dictates the electronic response. The A-site ion
controls electronic properties only indirectly: its size tunes
B-O-B bond angles and thus the B-electron bandwidth,
while its charge determines the electron filling. For
instance, experimental [10–26] and theoretical [27–37]
studies of perovskite nickelates RNiO3 (R being a rare-
earth ion) have shown that varying R, with increasing ionic
sizes, induces a Mott insulator to metal transition driven by
increase in the Ni bandwidth.
In significant contrast to the above scenario, recent

experiments on BiNiO3 [38] and PbCrO3 [39], reveal a
distinct behavior. BiNiO3, with the large Bi cation at the A
site, is an insulator rather than a metal at ambient pressure
[40]. This insulator becomes metallic at a critical pressure
of 3.5 GPa, with a significant 2.5% volume contraction.
Similarly PbCrO3 exhibits an insulator-to-metal transition
at 2.5 GPa [39] with a colossal 7.8% volume collapse.
Similar large volume shrinking insulator-to-metal transi-
tions have been observed upon heating; this technologically
important phenomenon was termed “colossal negative
thermal expansion” [45,46].
For BiNiO3, attempts to address its MIT using Hartree-

Fock theory [47] and dynamical mean-field theory [48] have

focused on models involving only Bi and Ni sites. These
studies view the insulator as a checkerboard charge ordered
crystal ½Bi3þ0.5Bi5þ0.5�½Ni2þ�, assuming that Bi acts as a valence
skipping ion with an attractive U Hubbard interaction, while
the high pressure metal results from a valence transition into
a uniform ½Bi3þ�½Ni3þ� configuration. However, photoemis-
sion spectroscopy on the metal [49,50] reveals that the nickel
valence state is far from being purely Ni3þ. At the same time,
Bi5þ has an energetically deep 6s shell [51] which strongly
suppresses Bi3þ-Bi5þ charge disproportionation. These
theories neither considered the crucial role of ligand nor
that of the lattice in the MIT. These issues are reminiscent of
the “charge disproportionation” debate in insulating RNiO3

and B-site bismuthate BaBiO3 [41–44,52,53]. Indeed, rather
than being Ni2þ-Ni3þ charge crystals, the RNiO3 insulators
feature a NiO6 breathing mode instability, leading to site-
selective Mott insulators; holes on one Ni sublattice undergo
a Mott transition while holes on the other sublattice reside in
NiO6 molecular orbitals [30,31,52,53].
In this Letter, we show that a natural solution to volume

collapse MIT in ABO3 perovskites like BiNiO3 or PbCrO3

emerges if the oxygen sites and lattice distortions are
explicitly included in modeling these novel perovskites. In
steps towards this, we first show, using density functional
theory (DFT) on BiNiO3 and PbCrO3, that the key to their
phenomenology lies in an active A site with a 6s orbital
which can strongly hybridize with oxygen, driving the
system to negative charge transfer regime, thereby creating
a ligand hole. Based on this, we propose a model for such
perovskites which includes all three ions (A, B, O) and the
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lattice degree of freedom, and solve it using slave rotor
theory. We find that when the oxygen energy level is closer
to that of the A-site cation, the system permits an A-O
breathing mode instability, which leads to a three-
dimensional (3D) checkerboard pattern of compressed
and expanded AO12 polyhedra. This is analogous to a
3D Peierls’ transition in a strongly correlated regime, which
does not rely on Fermi surface nesting [54,55]. This
instability suppresses the B-O hybridization, triggering a
Mott insulating state due to strong correlations on the
B-site ions. Applying pressure shifts the ligand energy,
favoring B-O hybridization over A-O hybridization. This
hybridization switch eventually suppresses the A-O breath-
ing mode instability and the concomitant hybridization
wave, leading to a metal dominated by B-O states at the
Fermi level. Our results motivate us to conclude that
BiNiO3 and PbCrO3 belong to a broad category of ligand
hole compounds exhibiting hybridization-switching
induced Mott transition. We propose further material
candidates in this category, namely, TlMnO3 and InMnO3.
Pressure-induced structural transition.—At ambient

pressure (AP), the crystal structure of BiNiO3 is triclinic,
with two inequivalent Bi sites (Bi1, Bi2), and four
inequivalent Ni sites. The high pressure (HP) phase, above
3.5 GPa [56], has orthorhombic symmetry, with equivalent
Bi and Ni sites. The AP phase has a staggered pattern of
compressed and expanded BiO12 polyhedra, while the HP
phase features BiO12 polyhedra of uniform volume. We
begin by describing this structural transition within DFT.
DFT calculations were carried out in a pseudopotential
plane-wave basis with generalized gradient approximation
[57] with Hubbard U (GGAþU) [58] (U ¼ 4 eV,
JH ¼ 0.9 eV), as implemented in the Vienna ab initio
simulation package [59]; see Supplemental Material (SM)
for details [60].
We fit the volume dependence of our DFT cohesive

energies of the AP (triclinic) and HP (orthorhombic)
structures to the Birch-Murnaghan equation [61]. Using
a common tangent construction [see Fig. 1(a)], we find a
transition from low-symmetry triclinic to high-symmetry
orthorhombic structure with a volume reduction of ≈3%,
in good agreement with high pressure experiments [46].
To understand the role of the bond deformation in the

MIT, we computed the stiffness of the Bi-O bonds. Starting
from the undistorted orthorhombic structure at volumes
corresponding to AP and HP (at 6 GPa), and replacing Ni
ions by a uniform positive background, we calculated the
energy change δE for small breathing displacement of
oxygen atoms (δO) from their equilibrium positions; see
Fig. 1(b) inset. Fitting δE ¼ 1

2
kðδOÞ2 yields the Bi-O bond

stiffness constants kBiO ¼ 2.06 eV=Å2 and 2.32 eV=Å2 for
AP and 6 GPa HP volumes, respectively. For the Ni-O
sublattice, see Fig. 1(b), corresponding calculations yield
kNiO ¼ 7.96 eV=Å2 and 10.84 eV=Å2. Thus, the Ni-O
bond, which is stiffer than Bi-O bond, becomes

substantially stiffer at HP, suppressing a distortion of the
Ni-O sublattice. For comparison, the similarly calculated
Ni-O stiffness in PrNiO3, which shows a breathing mode
distortion [62], is 7.22 eV=Å2, a factor of 1.5 smaller than
that of HP BiNiO3. This explains the absence of a breathing
mode distortion of NiO6 octahedra in the HP phase, and the
resulting stability of the volume-collapsed metal against a
Ni “charge-disproportionation” MIT.
DFT electronic structure.—Figure 2(a) shows the spin-

polarized GGAþ U density of states (DOS) of AP and HP
(7 GPa) BiNiO3, respectively, projected onto Bi-s, Ni-d,
and O-p states. The Ni-d and O-p plots are the DOS
averaged over four inequivalent Ni sites in AP, and six and
two O sites in AP and HP, respectively.
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FIG. 1. (a) DFT cohesive energy versus volume for AP
(triclinic) and HP (orthorhombic) BiNiO3; the intersection points
of the plotted common tangent with the two curves yields the
volume change ΔV=V ≈ 3% at the transition. (b) Elastic energy
of the Ni-O sublattice as a function of O-displacement for the HP
(dashed) and AP (solid) volumes. Inset shows similar plot for the
Bi-O sublattice.
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FIG. 2. (a) GGAþ U projected DOS of BiNiO3 in AP (top
panels) and HP (bottom panels) phase. Left, middle, and right
panels show projections to Bi-s (displaying relevant energy
ranges), Ni-d, and O-p. Zero of energy is set at GGAþU Fermi
energies. For AP, projections to Bi1 (solid, black) and Bi2 (shaded)
are shown separately. (b) Calculated energy levels of Bi-s, O-p,
and Ni-eg in the AP and HP phase. Zero of energy is set at Ni-eg.
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At AP, our DFT calculation gives rise to an insulating
solution upon including antiferromagnetic (AFM) order.
Both Bi1 and Bi2 sites show filled 6s states deep down in
energy ≈10.5 eV below Fermi level (EF). The split-off,
unoccupied part of Bi2-s states, which is at ≈1 eV above
EF, and well separated from the filled Bi2-s states by
≈9–10 eV, is entirely derived from strong admixture with
O-p states, signaling creation of a ligand hole (see encircled
regions in the figure). Thus, the insulator is weakly Bi-
charge disproportionated [63]. The contribution of Ni-d to
this split-off state is small. We find the Ni-d states are filled
in the majority spin channel, while in the minority spin
channel the octahedral crystal-field split Ni-t2g and Ni-eg
states are, respectively, filled and empty (positioned beyond
the energy shown in the figure). This suggests the stabi-
lization of ½Bi13þ0.5ðBi23þL2ð1−δÞÞ0.5�½Ni2þLδ� configuration
in AP, instead of the proposed ½Bi13þ0.5Bi23þ0.5�½Ni2þ� con-
figuration [47,48]. Our calculated oxygen magnetic
moment is large ≈0.1 μB, contrary to the expectation of
nonmagnetic O2− for ½Bi13þ0.5Bi23þ0.5�½Ni2þ� configuration.
Total energy calculations show that Ni favors a G-type
AFM order, in agreement with neutron diffraction [56].
At HP, the DFT calculation gives rise to a metallic

solution, with dispersive bands crossing the Fermi level.
Our DFT total energy calculations show ferromagnetic
Ni-Ni interactions; we therefore predict the HP metal
should show ferromagnetic correlations. Analyzing the
projected O-p DOS, we again find significant weight at
the unoccupied part, reflecting the ligand hole. However,
the unoccupied O-p states have a lot more Ni-d character,
and much less Bi-s character, compared to the AP phase.
Interestingly, the magnetic moment on the Ni site in the HP
phase (1.48 μB) is not much smaller than in the AP phase
(1.73 μB), in marked contrast to proposal of Ni2þ to Ni3þ
valence transition between AP and HP. DFT thus suggests
stabilization of the ½Bi3þLδ�½Ni2þL1−δ� configuration in the
metal. This picture within the single-reference description
of DFT is close to the multireference description given by
Ni K-edge x-ray absorption spectroscopy [50]. Calculation
of crystal orbital Hamiltonian population (COHP) [64,65]
(see SM), corroborates the change of ligand hole character
from Bi-s to Ni-d.
What causes this shift of oxygen covalency? To answer

this, we show in Fig. 2(b), the computed Bi-s, Ni-eg, and
O-p energy level positions in AP and HP phases, obtained
from the low-energy tight-binding Hamiltonian in the
Wannier function basis within the Nth order muffin-tin-
orbital (NMTO) formulation of the downfolding tech-
nique [66,67] (see SM). At AP, the s-level energy
positions of Bi1 and Bi2, differ by about 1.5 eV, Bi2-s
being closer to O-p compared to Bi1-s, leading to
stronger covalency between Bi2-s and O-p. Ligand holes
are thus preferably associated with Bi2. At HP, the
energies of Ni-d and O-p get markedly closer, driving
a covalency shift to Ni-O.

Our DFT results for PbCrO3 are qualitatively similar.
The quantitative differences in PbCrO3, a smaller critical
pressure and larger volume collapse, arise from the O level
lying closer to Pb. Thus, the Pb-O covalency is stronger
than Bi-O. At the same time, Cr t2g orbitals hybridize less
effectively with O than Ni eg (see SM).
Slave rotor theory.—To go beyond the DFTþU treat-

ment of the strong correlation effect, and capture the Mott
transition without any assumption of magnetic ordering, we
next investigate such ABO3 perovskites in a DFT-inspired
“s-p-d” model, which we study using slave rotor mean
field theory [68–72]. Our work represents a novel appli-
cation of slave rotor theory which simultaneously treats all
three ions (A, B, O). In contrast to previous work [47,48],
our proposed model does not include a phenomenological
negative U on the A site. Instead, we include phonon
distortion and A-O hybridization, which provides a more
meaningful microscopic picture [73,74].
Our model for ABO3 consists of a multiorbital manifold

on the B site, with nondegenerate orbitals on A and on the
oxygen site. The on-site energies are denoted by ϵA, ϵB,
and ϵOx; we fix ϵB ¼ 0. Denoting A-O and B-O hopping
amplitudes in the symmetric phase as tA, tB, respectively,
and including a Hubbard U > 0 on the B site, yields the
Hamiltonian H ¼ H1 þH2 þH3 þH4, with

H1 ¼ ϵA
X

r;σ

a†rþΔ;σarþΔ;σ þ ϵOx
X

r;σ;δ

l†
rþδ;σlrþδ;σ

H2 ¼ −tB
X

rασδ

gαδðb†α;r;σ½lrþδ;σ þ lr−δ;σ� þ H:c:Þ

þU
2

X

r

�X

ασ

b†α;r;σbα;r;σ − 2

�
2

H3 ¼ −tA
X

r;δ;ηδ;σ

½1þ φð−1Þr�ða†rþΔ;σlrþΔþηδ;σ þ H:c:Þ

H4 ¼ 12N ×
1

2
κφ2

where a, b, l denote electron operators on A, B, and the
ligand site, respectively, with α labeling B-site orbitals.
Here H1 describes the on-site energy, with a choice
ϵB ¼ 0, while H2 and H3, respectively, describe the B-O
and A-O electronic Hamiltonians, and H4 denotes the
elastic energy cost of A-O bond deformations. Based on
DFT, we assume the stiffer B-O sublattice to be immune to
breathing distortion. Staggered A-O hopping, tAð1� φÞ,
permits us to capture the A-O hybridization wave. In
the symmetric phase φ ¼ 0. In the distorted phase
φ ¼ βðδaAO=aAOÞ, where β≡ ð∂ ln tA=∂ ln aAOÞ, and
δaAO is the change in A-O bond length compared to its
undistorted value aAO. The elastic energy cost inH4 is 1

2
κφ2

per bond, where κ ¼ ka2AO=β
2, with spring stiffness con-

stant k, and 12N A-O bonds. For BiNiO3, we have
two eg orbitals (1≡ dx2−y2 , 2≡ d3z2−r2) at the Ni site, with
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g1;x=y=z ¼ f1;−1; 0g and g2;x=y=z ¼ ð1= ffiffiffi
3

p Þf−1;−1; 2g
due to the orbital-dependent Ni to ligand hopping [75].
This model can be extended to study t2g orbitals relevant to
Cr in PbCrO3.
We study the zero temperature phase diagram of

Hamiltonian H using slave rotor mean field theory on
the B site (see SM for details). This approach ignores
fluctuations of the rotor field as well as gauge fluctuations;
nevertheless, it reasonably captures strong correlation
effects [68–72]. We work in units with tB ¼ 1. We choose
ðϵA − ϵBÞ=tB ¼ 8, tA=tB ¼ 2.5, and vary κ and ϵOx, with
ϵA < ϵOx < ϵB. Some variation in these parameters does
not qualitatively affect our main results. Figure 3 shows the
phase diagram with varying ligand energy and stiffness κ,
for a B-site ion with (a) U=tB ¼ 6.5, and (b) U=tB ¼ 2.5.
For significant κ, when ϵOx is close to ϵB, the ground state is
an undistorted metal (UM) with noninteger B-site occu-
pancy nB. Tuning ϵOx towards ϵA, or κ to smaller values,
leads to a transition into either a distorted Mott insulator
(DI) with pinned nB ¼ 2 (i.e., a “doping tuned” Mott
transition on B site), or a distorted metal (DM), depending
on U. The strongly correlated case, U=tB ¼ 6.5, which
results in a Mott localized DI, mimics the Ni site in BiNiO3;
for tB ¼ 0.75 eV, we get U ≈ 5 eV. Thus, a spontaneous
A-O hybridization-wave �φ cooperates with a large U on
the B site, resulting in a hybridization-switching induced
Mott insulator.
The critical value ðϵB − ϵOxÞcrit for the MIT increases

with increasing κ. At the indicated point in the DI phase
in Fig. 3(a), with κ ≈ 0.25, the optimal distortion
φ ≈ 0.55. Choosing β ≈ 5 [76] and aBiO ¼ 2.3 Å yields

δaAO ≈ 0.25 Å as seen in BiNiO3. Setting tB ¼ 0.75 eV,
we get ðϵB − ϵOxÞcrit ≈ 3.8 eV for metallization, while the κ
value implies a stiffness k ≈ 1 eV=Å2, in reasonable agree-
ment with DFT given the simplicity of the model which
retains only Ni eg and a single ligand orbital. The DOS,
shown in Fig. 3(c), displays a Mott gap in the DI phase
while it is metallic in the UM phase. Forcing φ ¼ 0 within
the DI phase leads to a metallic DOS [see Fig. 3(c)];
correlations alone are thus insufficient to induce an
insulator.
Bond dependent hybridization.—Figures 4(a)–4(d) show

the bond-dependent kinetic energy on the A-O and B-O
bonds from the model Hamiltonian. In the DI phase, the
B-O hybridization is weak, while AO12 polyhedra display
the hybridization wave. In the UM phase, on the other
hand, the B-O hybridization strengthens significantly
compared to that in insulating phase, while the A-O
hybridization becomes uniform. We corroborate this using
NMTO-downfolding-derived DFT Wannier function plots
of BiNiO3 in O-p only basis calculations, as shown in
Figs. 4(e) and 4(f) [77]. At AP, the Wannier function is
highly asymmetric, having a pronounced tail at Bi2 and
nearly vanishing at Bi1. At HP, on the other hand, it is
symmetric between Bi sites. Moving from AP to HP the tail
at Ni is strengthened significantly, highlighting the change
from a Bi s-like to Ni d-like ligand hole.
Conclusion.—We have proposed the concept of a

hybridization-switching induced Mott transition in ABO3

perovskites, with BiNiO3 and PbCrO3 as concrete exam-
ples. Using DFT and slave rotor theory, we have identified
its key ingredients as follows: (a) extended A-site orbitals
which strongly hybridize with oxygen, generating negative
charge transfer induced ligand holes and covalent A-O
bonds susceptible to breathing distortion (b) strong corre-
lations on the B-site ion. Pressure tuning the oxygen energy

FIG. 3. Phase diagram varying κ and ϵB − ϵOx for (a) U=tB ¼
6.5 and (b) U=tB ¼ 2.5. (c) DOS NTotðωÞ for typical points in AP
and HP phases, marked by stars in (a), as well as DOS for the
metastable AP phase with imposed φ ¼ 0.

FIG. 4. Bond-dependent kinetic energy from the model (color
bar shows magnitude) for B-O and A-O sublattices in the AP [(a)
and (b)] and HP [(d) and (c)] phase, projected to the xy plane.
Constant amplitude surfaces of DFT O-p Wannier functions for
BiNiO3 at AP (e) and HP (f), superposed on NiO6 octahedra with
adjacent two Bi ions. Cyan (light) and magenta (dark) colors
indicate opposite signs.
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produces a volume-collapse Mott insulator to metal tran-
sition via shift in covalency. Based on our study, we
propose TlMnO3 [78,79], and even 5s systems like
InMnO3, as further promising material candidates [80].
Charge doping such Mott insulators may lead to polaronic
transport and superconductivity.
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