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We investigate the electronic structure of the flat bands induced by moiré superlattices and electric fields
in nearly aligned ABC trilayer graphene (TLG) boron-nitride (BN) interfaces where Coulomb effects can
lead to correlated gapped phases. Our calculations indicate that valley-spin resolved isolated superlattice
flat bands that carry a finite Chern number C ¼ 3 proportional to the layer number can appear near charge
neutrality for appropriate perpendicular electric fields and twist angles. When the degeneracy of the bands
is lifted by Coulomb interactions, these topological bands can lead to anomalous quantum Hall phases that
embody orbital and spin magnetism. Narrow bandwidths of ∼10 meV achievable for a continuous range
of twist angles θ ≲ 0.6° with moderate interlayer potential differences of ∼50 meV make the TLG-BN
systems a promising platform for the study of electric-field tunable Coulomb-interaction-driven sponta-
neous Hall phases.
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The generation of moiré superlattices in graphene and
other 2D materials by forming van der Waals interfaces has
emerged as an efficient route to tailor high-quality artificial
band structures [1–3]. In particular, the periodic moiré
patterns in the length scale of a few tens of nanometers
that arise due to a small lattice constant mismatch or twist
angles with the substrate give rise to moiré mini-Brillouin
zones whose zone corners are at energy ranges accessible by
conventional field effects in gated transistor devices [4–10].
The interlayer coupling becomes effectively strong in the
limit of long moiré pattern periods due to nonperturbative
coupling between the superlattice zone folded moiré bands
[4,5], which suggests that flat bands can routinely form in the
limit of long moiré pattern periods for a variety of 2D
material combinations including twisted bilayer graphene
and transition metal dichalcogenide heterojunctions [11–13].
Recent experiments have shown resistance peaks as a
function of carrier doping indicative of Mott phases in
twisted bilayer graphene at the first magic twist angle [14,15]
and in ABC trilayer graphene (TLG) nearly aligned with
hexagonal boron nitride (BN) [16] when the Fermi energy is
brought near the superlattice flat bands (SFBs). In this Letter,
we carry out an analysis of the SFBs in TLG-BN, showing
that they are generally topological bands; i.e., they have
finite Chern numbers, and the lifting of the valley-spin
degeneracy by Coulomb-interaction-driven gaps of these
Chern flat bands (CFBs) can give rise to quantum anomalous
Hall phases with orbital and spin magnetism even in the
absence of an external magnetic field.

Model Hamiltonian.—The model Hamiltonian for ABC
stacked TLG is based on the low-energy model for trilayer
graphene with the band parameters obtained from density
functional theory local density approximation (LDA)
[17–19]. We represent the Hamiltonian acting in the
basis of the low-energy sites A for bottom and B for top
layers. Each band is fourfold degenerate, with twofold
degeneracy in the principal valleys ðK;K0Þ, labeled with
ν ¼ �1, and twofold degeneracy in real spin ð↑;↓Þ, labeled
with s ¼ �1. We label the lowest valence and conduction
ðh; eÞ bands through b ¼ �1. The low-energy Hamiltonian
for a rhombohedral N-layer graphene is

Hν;ξ
N ¼ υN0

ð−t1ÞN−1

�
0 ðπ†ÞN
πN 0

�
þΔσz þHR

N þHM
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where π ¼ ðνpx þ ipyÞ. We will discuss our results for
the ν ¼ 1 principal valley K unless stated otherwise. The
parameter Δ represents an adjustable interlayer potential
difference between the top and bottom layers that include
the effects of a perpendicular electric field and its screen-
ing. In a TLG with N ¼ 3 layers, we model the remote
hopping-term corrections through
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The effective hopping parameters are t0 ¼ −2.62 eV,
t1 ¼ 0.358 eV, t2 ¼ −0.0083 eV, t3 ¼ 0.293 eV, and t4 ¼
−0.144 eV [19,20], where the associated velocities are
defined as υm ¼ ffiffiffi

3
p

ajtmj=2ℏ, with a ¼ 2.46 Å being
the lattice constant of graphene. The diagonal terms
Δ0 ¼ 0.0122 eV and Δ00 ¼ 0.0095 eV are used to provide
an accurate fit for the LDA bands. The moiré patterns
have a period lM ≃ a=ðε2 þ θÞ1=2 that depends on ε ¼
ða − aBNÞ=aBN , the relative lattice constant mismatch
between graphene and BN, and the twist angle θ. The
moiré potential generated in graphene due to BN is
given by

HM
ξ¼�1ðr⃗Þ ¼ VM

A=Bðr⃗Þ ¼ 2CA=BRe½eiϕA=Bfðr⃗Þ� ðξσz þ 1Þ
2

;

ð3Þ
where the moiré parameters are CA ¼ −14.88 meV, ϕA ¼
50.19° and CB ¼ 12.09 meV, ϕB ¼ −46.64° [4,21], and

the auxiliary function fðr⃗Þ ¼ P
6
m¼1 e

iG⃗m·r⃗½1þ ð−1Þm�=2 is
expressed using the six moiré reciprocal lattices G⃗m¼1…6 ¼
R̂2πðm−1Þ=3G⃗1 successively rotated by sixty degrees, where

G⃗1 ¼ ½0; 4π=ð ffiffiffi
3

p
lMÞ�. Two possible alignment potentials

between TLG and BN, labeled by ξ ¼ �1, that perturb
the low-energy A (bottom) or B (top) sites in graphene
contacting BN give rise to different band structures.
Topological flat bands in TLG-BN superlattices.—The

presence of moiré superlattices can produce avoided gaps at
the moiré mini-Brilloun-zone (mBZ) boundaries [22–24],
while an additional gap at the primary Dirac point would
isolate the low-energy bands near charge neutrality
[16,21,25,26]. Because the low-energy bands in ABC
trilayers are less dispersive than those of single or bilayer
graphene, they are particularly suitable for the efficient
isolation and narrowing of the low-energy bands by electric
fields that enhance both the primary and secondary gaps
[16]. Here, we discuss how the gaps opened by
perpendicular electric fields lead to Berry curvatures in
the isolated flat bands of TLG-BN and can turn them
into topological Chern bands with a quantized Hall
effect. The Berry curvature for the nth band can be
calculated using the standard formula Ωnðk⃗Þ¼−2

P
n0≠n

Im½hunjð∂H=∂kxÞjun0 ihun0 j∂H=∂kyjuni=ðEn0 −EnÞ2� [27],
where for every k point we take sums through all the
neighboring n0 bands, the juni’s are the moiré superlattice
Bloch states, and the En’s are the eigenvalues. The Chern
number of the nth band C ¼ Cν;s;N;ξ;b calculated through

C ¼ R
mBZ d

2k⃗Ωnðk⃗Þ=ð2πÞ assumes implicit indices. In
Fig. 1, we can observe the Berry curvature hot spots near
the primary and secondary gaps with larger Chern number
weights.
Our numerical calculations for TLG-BN predict the

Chern numbers C ¼ �3 for the CFBs depending on system
parameters. We have verified up to trilayers that

C ¼ NνξδsgnðΔÞ·ξ;b ð4Þ

in an N-chiral graphene two-dimensional electron gas
(2DEG), where the Chern bands are found for either the
valence or conduction bands depending on applied electric
field sign and moiré pattern potential. In Fig. 2, we show
that the calculated Chern numbers are quantized for a wide
range of Δ values for valence and conduction bands of
TLG-BN and BLG-BN. In particular, we find that either the
conduction or valence SFB near charge neutrality becomes
a Chern band as soon as Δ opens a gap at the primary Dirac
point. This behavior can be understood if we consider that a
rhombohedral N-layer graphene [28] develops in the limit
of small Δ a primary Chern weight wP ∼ sgnðΔÞbνN=2
near each valley whose sign depends on sgnðΔÞ and the
hole or electron band character b ¼ �1, as well as the
valley ν ¼ �1 [29–32]. In the absence of secondary gaps
due to moire patterns, the K and K0 principal valleys are
mutually connected, and the valley Chern numbers iden-
tified as Chern weights wP near each valley are not
protected topological numbers. Nevertheless, they give
an intuitive idea about the Hall conductivity dynamics
near the chiral 2DEG band edges and are useful for

FIG. 1. (a) The band structure of ABC-TLG for zero twist angle
near charge neutrality in the folded zones representation subject
to VM

A ¼ HM
ξ¼1 moiré patterns and interlayer potential differences

of Δ ¼ 10 meV that give rise to flat Chern bands, with C ¼ 3
represented in red and the trivial C ¼ 0 band represented in blue.
(b) The Berry curvatures for the valence and conduction band
structures of panel (a), where we see Berry curvature hot spots
near the trigonal warping band edges and mBZ boundaries that
add up in the Chern band. In the trivial band, we see sharp peaks
with opposite Berry curvatures, mainly at the mBZ boundaries,
that cancel out.

PHYSICAL REVIEW LETTERS 122, 016401 (2019)

016401-2



counting the number of zero-line modes in the valley Hall
domain walls [31–38]. The situation is quite different when
primary and secondary gaps are simultaneously present
near the mBZ boundaries, because the Chern weights sum
Ce=h ¼ we=h

P þ we=h
S needs to add up to a zero or finite

integer value in each isolated band [39], where we
S and wh

S
are the secondary Chern weights for the electron and hole
bands. The value s of we=h

S depends on the moiré pattern
that generates the avoided secondary gaps, as evidenced by
the fact that different moiré potentials VM

A or VM
B give rise to

flat bands with different Chern numbers. The abrupt change
in the band Chern number with the sign of Δ can be related
with the sign changes of wP. Considering that wh

P ¼ −we
P

for electrons and holes in the limit jΔj ≪ 1, we conclude
that the secondary weights should initially be equal, we

S ¼
wh
S (see Fig. 2), while unequal electron-hole secondary

Chern weights we
S ≠ wh

S might be achievable using different
moiré and Hamiltonian parameters. For increasing Δ,
the primary Chern weights are progressively pushed from
the vicinity of Γ̃ towards the mBZ boundaries closer to the
location of the secondary weights we=h

S while maintaining a
constant Chern number in the isolated bands. Conclusions
similar to our analysis in TLG-BN could be expected in
other rhombohedral multilayer graphene N-chiral 2DEGs,
although the remote hopping terms in the band Hamitonian
are important to properly account for the flatband dis-
persions and the secondary gaps. Figures S1 and S2 in the
Supplemental Material illustrate the Chern weights in the
mBZ from small to large Δ in minimal N-chiral multilayer
graphene with N ¼ 1, 2, 3 [40].
Field-dependent bandwidths and localization.—The

external electric field strength modulates the size of the
primary band gap near Γ̃, which impacts directly the shape
of the low-energy SFBs, and their optimum flatness

will depend on field direction and strength. In Fig. 2,
we represent a color map that summarizes the evolution of
the bandwidth of the SFBs as a function of electric field and
twist angle quantified through the difference between the
maximum and minimum energy values within a given
band. We can observe that for every given twist angle, there
is often an optimum interlayer potential difference that
maximizes the band flatness for either positive or negative
field directions, highlighting the electron-hole asymmetry
inherent in TLG-BN, and that the overall flatness does not
always grow monotonically with increasing electric field
magnitude. Increasing Δ to appropriately large values will
favor the onset of Coulomb-interaction-driven gaps by
increasing the separation of the SFBs with neighboring
energy bands and reducing their bandwidth. The parameter
space of Δ and θ where Ueff=W ≳ 1 is favorable for the
onset of ordered phases can be found in Fig. S4 in the
Supplemental Material [40]. In addition to the electric field
magnitude and direction, the relative twist angle in the
system has an impact in the flatness and energy location of
the SFBs. Introducing a finite twist angle is expected to
widen the moiré bands due to the increase in the size of the
mBZ in reciprocal space for reduced moiré real-space
periods. However, for relatively small twist angle values
of up to∼1°, the moiré pattern periods are still∼10 nm, and
the enhanced suppression of achievable bandwidth through
external electric fields can sufficiently compensate for this
bandwidth increase due to rotation. Direct information on
the band flatness is reflected in the density of states (DOS)
plots as a function of energy allowing us to find the energy
regions where Coulomb correlations are expected to be
stronger. The local density of states (LDOS) plots for every
local stacking configuration also provide insights on the
electron localization properties of the SFB electrons in real
space; see Fig. 2. Charge and spin density modulations are

FIG. 2. (a) Chern numbers for the valence and conduction flat bands for aligned TLG on BN for the bands in Eqs. (1) and (2), bilayer
on BN usingHR

2 from Ref. [20], and corresponding minimalHR
ξ ¼ 0models, calculated using a total of 18 361 k points in the mBZ. An

abrupt transition happens when the sign ofΔ changes near zero field. (b) Schematic illustration of the Chern weights near Γ̃ and the mBZ
boundaries in the limit of jΔj ≪ 1 that add up into an integer Ce=h ¼ we=h

P þ we=h
S , where we

P ¼ −wh
P and we

S ¼ wh
S, so that either the

electron or hole band has a finite Chern number. (c) Bandwidth phase diagram for the valence and conduction bands as a function of
interlayer potential differenceΔ and twist angle θ calculated from the difference between the maximum and minimum eigenvalue within
a band. (d) Local stacking and energy-dependent LDOS and DOS manifesting the localization of flatband wave functions.
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expected to take place mainly around the LDOS peaks
when the degeneracy of the bands is lifted due to Coulomb
interactions. The LDOS plots provide valuable information
for guiding scanning probe microscopy experiments that
search for flatband signatures.
Spontaneous quantum Hall phases.—Filling of non-

trivial Chern bands will lead to an associated quantum
Hall effect that should be observable in transport experi-
ments. An interesting scenario is found in partially filled
CFB when valley and spin degeneracy is lifted by Coulomb
interactions, giving rise to a variety of spontaneous quan-
tum Hall phases. We take as a working assumption that the
interaction-driven gapped states at 1=4, 1=2, and 3=4 partial
fillings of the flat bands will develop into spin-collinear and
valley-collinear phases, where each valley-spin flavor can
be filled sequentially. In the Hartree-Fock approximation, it
is reasonable to assume that the same spin polarization will

be preferred over noncollinear spin states as in conventional
quantum Hall ferromagnetism of Landau levels [41], while
valley polarized phases can be preferred due to momentum
space exchange condensation over valley-coherent phases
with two partially filled valleys [42]. We represent
Coulomb-interaction-driven gaps through rigid shifts pro-
portional to λ in the CFB energies through a function gðν; sÞ
to classify the different possible states assuming any of
them are possible. We will follow a classification scheme
closely similar to the four valley-spin components of
N-chiral multilayer graphene in Refs. [30,43], in our case
facilitated by the fact that the quantum valley Hall effect is
proportional to CFB filling. In Fig. 3, we illustrate for the
example of the b ¼ 1, ξ ¼ 1, Δ > 0 case corresponding to
the top panel of Fig. 1 a representative selection of quantum
Hall ground states, also summarized in Table I. At charge
neutrality, when all CFBs are filled to filling 1, we have
a valley Hall state where the charge Hall conductivity
summed over all occupied flavors totals to zero, and the
charge Hall conductivity is σtotH ¼ P

iσ
i
H ¼ 0. The cases of

1=4 and 3=4 fillings can be pictured through the selective
filling and emptying of a given ðν0; s0Þ band using shifts of
gðν; sÞ ¼ λð1 − 2δν0νδs0sÞ and λð2δν0νδs0s − 1Þ, respectively.
These are interesting cases with σtotH ¼ �Ne2=h charge
Hall conductivity, where we have simultaneously a quan-
tum anomalous and spin Hall effect. For the 1=2 filling,
when two CFBs are filled, we have a greater variety of
quantum Hall ground states. One of the possibilities is the
quantum anomalous Hall phase where two equal ν0 valley
CFBs are filled. The shift functions can then be modeled
through gðν; sÞ ¼ λð1 − 2δν0νÞ, and the charge Hall con-
ductivity is σtotH ¼ 2Nν0e2=h. The remaining two scenarios
have Hall conductivity σtotH ¼ 0, in the case where the same
spin s0 are polarized and are modeled through gðν; sÞ ¼
λð1 − 2δs0sÞ shifts, and the quantum spin phase can be
modeled through gðν; sÞ ¼ �λνs shifts depending on the
relative signs of the occupied valley-spin indices.
Discussions.—In this Letter, we have analyzed the

topological character of the superlattice flat bands
(SFBs) in ABC trilayer graphene-hexagonal boron-nitride

FIG. 3. For the valence flat bands associated with Δ > 0 and
ξ ¼ 1 moiré potentials, we schematically represent how the
occupation of valley ν ¼ ðK;K0Þ and spin s ¼ ð↑;↓Þ resolved
CFBs contributes towards the generation of orbital and spin
magnetism of different signs. Different band occupations can be
pictured by shifting the band energies by a gðν; sÞ function. Four
different configurations of valley spin are possible for (b) 1=4 and
(c) 3=4 fillings, and two for each 1=2 filling represented in
(d)–(f). The total charge Hall conductivity σtotH ¼ P

iσ
i
H of the

bands is contributed by σiH ¼ Cie2=h for each occupied valley-
spin flavor i, where Ci ¼ NνξδsgnðΔÞ·ξ;b, and the valley Hall
conductivity is proportional to filling. A variety of spontaneous
quantum anomalous, valley, and spin Hall effects should be
expected when interaction-driven gaps open for 1=4, 1=2, and
3=4 fillings of the CFB. In particular, 1=4 and 3=4 fillings are
found to simultaneously have spin and orbital magnetism.

TABLE I. Summary of the Chern flatband configurations (1 for
occupied, 0 for unoccupied) and corresponding charge, spin, and
valley Hall conductivities (in e2=h units) and insulator types:
Quantum anomalous Hall (QAH), spin Hall (QSH), valley Hall
(QVH), and spin polarized (SP). The layer numberN ¼ 3 is equal
to the flatband Chern number magnitude in TLG-BN.

Fig. K↑ K↓ K0↑ K0↓ σðCHÞ σðSHÞ σðVHÞ Insulator

3(a) 1 1 1 1 0 0 4N QVH
3(b) 1 0 0 0 N 0 N QAH, SP, QVH
3(c) 1 1 1 0 N −N 3N QAH, QSH, SP, QVH
3(d) 1 0 0 1 0 2N 2N QSH, QVH
3(e) 1 0 1 0 0 0 2N SP, QVH
3(f) 1 1 0 0 2N 0 2N QAH, QVH
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superlattices, where signatures of gate-tunable Mott gaps
have been observed recently in experiments [16]. Our
analysis indicates that topological flat bands with Chern
number C ¼ �3 will form either for electrons or for holes
depending on the electric field sign and moiré potential.
This scenario makes it possible to study Coulomb-
interaction-driven ordered phases in zero and finite
Chern number flat bands within the same device by
modifying the carrier density from electrons to holes,
making this system an interesting platform for exploring
the interplay of correlation physics with topological order.
Band gap openings for partial filling of the flat bands
indicate that a selective occupation of Chern flat bands
(CFBs) of different valley-spin flavors should be possible.
Assuming valley-spin collinear ground states of these
partially filled CFBs, different types of spontaneous quan-
tum Hall phases with orbital and spin magnetization can be
expected, with total charge Hall conductivities of zero or
σtotH ¼ �6e2=h expected for 1=2 filling, whereas σtotH ¼
�3e2=h that is always finite is expected for 1=4 or 3=4
fillings. From a device application point of view, one
important advantage of the field-tunable gapped Dirac
materials is that the bandwidth variations of the SFBs
are less sensitive to twist angle compared to twisted bilayer
graphene, where a precise twist angle control is required.
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