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The thermodynamic properties of subsystems in strong interaction with the neighborhood can largely
differ from the standard behavior. Here we study the thermodynamic properties of rings and triplets in
equilibrated disordered 2D silica. Their statistics follows a Boltzmann behavior, albeit with a strongly
reduced temperature. This effective temperature strongly depends on the length scale of the chosen
subsystem. From a systematic analysis of the 1D Ising model and an analytically solvable model, we
suggest that these observations reflect the presence of strong local positive energy correlations.
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Introduction.—The thermodynamic properties of large
systems in a heat bath are very well understood in the
framework of the canonical ensemble. However, the sit-
uation becomes more complex when small systems such as
molecules in solution are analyzed. One expects strong
coupling effects, which may give rise to new phenomena
[1]. As a very clear-cut example, Dixit has studied the
properties of a dumbbell in a solvent with respect to the
distance distribution along the internal harmonic coordinate
[2,3]. Interestingly, this distribution showed significant
deviations from the standard Boltzmann behavior, expected
for thermal equilibrium. However, the average energy still
allows one to read the temperature so that a dumbbell can
still be regarded as a nanothermometer [4]. The numerical
data could be explained in the framework of a hyper-
ensemble [5,6] which can be expressed as a distribution of
temperatures and can be directly related to nonextensive
statistics [7]. Other researchers have used the concept of a
temperature distribution in order to rationalize the emer-
gence of dynamic heterogeneities in glass-forming systems
[8]. In any event, it is not obvious whether the distribution
of temperatures is a useful concept at all [4,9]. Also
fluctuations of other intensive thermodynamic properties
such as the chemical potential have been suggested to
describe local structural phenomena [10–12].
Herewe discuss a realistic system of an atomic disordered

network. The recent discovery of the two-dimensional silica
networks (2D silica) with STM [13,14] and STEM [15]
opened up the possibility to compare the simulated and the
experimentally analyzed network on the level of individual
atoms [16]. Recently, we have developed a two-dimensional
Yukawa-type force field [17–19] to quantitatively describe
the structure formation of 2Dsilica (for details, seeRef. [16]).
With this model it was possible to reproduce many exper-
imental observations, related to the structural properties,
as well as the distributions of rings and “triplet of rings.”

In general, such systems can be discussed in the framework
of random networks which was mainly developed from the
study of various macroscopic objects present in nature, e.g.,
soap bubbles or plant cells [20].Using Jaynes’s interpretation
of entropy in information theory [21,22], Rivier et al. [20,23]
postulated a “maximum entropy formulation” of random
networks which can predict the occurrence probabilities of
different ring sizes based on geometric parameters.
A natural elementary unit of a random network is a ring.

One may check the correlation between their energies and
their observation probabilities in equilibrium. However, as
compared to the properties of small molecular units in
solution, there is one conceptual difference: every atom
belongs to more than one ring. Thus, the interesting
question emerges whether the resulting interaction between
a ring and its surroundings gives rise to small-system
effects, like the non-Boltzmann-type distribution observed
for the dumbbell in solution.
Our key goal of this work is to show numerically that the

probability of a ring is governed by its energy via an
approximate Boltzmann relation, albeit with a largely
different temperature. Similar observations are made when
applying a reweighting procedure or studying substructures
of the 1D Ising model. From a model analysis we relate this
observation to the presence of positive energetic correla-
tions of adjacent regions of the system. Simulations and
model analysis show consistently that the standard thermo-
dynamic behavior is approached upon increasing the size of
the analyzed substructures.
Energetic aspects.—The Yukawa-type force field to

simulate the network formation of 2D silica in two
dimensions reads

VijðrijÞ ¼ ½ðσij=rijÞ12 þ ðqij=rijÞ expð−κrijÞ�; ð1Þ
where the force-field parameters (σ, q, κ) are given in
Ref. [16]. We have performed long NVT simulations with
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the Nose-Hoover thermostat [24] with a time step 0.01 for
T ≤ 0.016 and 0.005 for higher temperatures. We restricted
our analysis to long times where equilibrium was reached.
After the simulation was complete, we locally minimized
the evenly stored configurations of the system with
respect to its energy to sample the underlying inherent
structures, i.e., removing the vibrational fluctuations
[25,26]. We filtered out all “defect” configurations where
the coordination criteria for silicon and oxygen in two
dimensions are not fulfilled for each particle [16]. For the
“defect-free” configurations each structure is composed of
16 rings, covering the entire area without any gap in
connectivity. It is essential to use small systems because
otherwise one hardly finds defect-free configurations. It
was checked that the ring statistics does not display any
relevant finite size effects [16].
A natural definition of ring energies, based on the

energies of the individual atoms, is sketched in Fig. 1.
In a first step the potential energy of every O particle is
equally partitioned to the two adjacent Si particles; see
Fig. 1. As a result, the Si particles can be regarded as
“effective” Si particles since they also contain information
about the neighboring O particles. Formally this can be
written as

ϵSi;eff ¼
1

2

�
ϵSi þ

1

2

X3
i¼1

ϵiO

�

where the sum is over all three oxygen neighbors of a
silicon particle. The prefactor 1

2
takes into account the fact

that for the employed two-body force fields each energetic
contribution appears twice. In the final step the energies of
all effective Si particles are equally distributed to the three
rings they belong to. In what follows we denote the
effective Si particles as “particles.” The individual ring

energy is denoted ϵr. Furthermore, we define Er as the
average ring energy of rings of size r. With this con-
struction the sum of the ring energies is identical to the total
energy of the system.
Further, we analyze triplets of rings [27], formed by the

three rings with a common central corner. Their energies or
sizes are just the sum of the energies or sizes of the
contributing rings. The average energy of a triplet, Et, is
defined in analogy to Er. For the detailed data, see
Supplemental Material, SI.I, SI.II [28].
Boltzmann analysis.—A defect-free 2D-silica network

with periodic boundary conditions strictly conserves the
average ring size of 6 [16]. This additional constraint can be
taken into account by an additional Lagrange parameter.
However, in order to directly extract correlations between
energies and probabilities, we use a simple trick. We define
for a ring with size r the “complementary” ring with size
r� ¼ 12 − r such that the average size of both rings is 6. As
a consequence, we can correlate the energy Er þ E�

r with
the probability PrP�

r without additional size constraints.
We restrict this analysis to ring sizes between 4 and 8

since the other probabilities (in particular 3) are very small.
For the temperature T ¼ 0.015 one observes a nearly
perfect Boltzmann behavior; see Fig. 2(a). However, the
required inverse temperature βeffring is much larger than β.
We have repeated this analysis for different simulation
temperatures, showing on average μring ≡ βeffring=β ≈ 5.1 (see
Supplemental Material, SI.III [28]). We checked for
T ¼ 0.015, using the temperature distribution as suggested
by Dixit [2,3], that any residual temperature distribution is,
if at all, very small. Interestingly, in the low-temperature
limit the data start to deviate from a Boltzmann behavior
and a temperature distribution might indeed become
relevant (see Supplemental Material, SI.IV [28]).
For triplets we proceed analogously. Again we avoid the

use of additional Lagrange parameters to control the correct
average size by introducing complementary triplets, e.g.,
458 and 478. This guarantees that the average triplet size is
18, so that a direct correlation of Et þ E�

t with the
probability PtP�

t is possible. One has to use a degeneracy
factor ft to take care of the different permutations [16].
As seen in Fig. 2(b), we have an excellent Boltzmann
relation with βefftriplet > β. Averaging over the simulations at

different temperatures, we obtain μtriplet ≡ βefftriplet=β ≈ 2.7
(see Supplemental Material, SI.III [28]).
How do we interpret the values of μring; μtriplet? If the

standard Boltzmann behavior would hold on the single
particle level one would trivially obtain μring ¼ 3, reflecting
that in our definition of rings only one third of the particle
energy is taken into account. Thus, to judge the amount
of nonstandard Boltzmann behavior one should take
μeffring ¼ 5.1=3 ≈ 1.7, corresponding to an increase of 70%
of the inverse bath temperature. Repeating the analysis for
triplets, one has to take into account that on average a triplet

FIG. 1. Sketch of the definition of the ring energies for a
defect-free configuration, using periodic boundary conditions.
(Red ¼ O, Green ¼ Si). (a) All O-particle energies are equally
added to the connected Si particles. (b) All redefined Si-particle
energies are equally redistributed to the connected rings. The
combination of three rings in (b), marked with gray shade, is an
example of a “triplet of rings” as they share a common Si particle
at the center. The image is partially reproduced from Ref. [16] by
permission of the PCCP Owner Societies.
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contains 13 different particles. This results in μtriplet ¼
13 � 3=18 ≈ 2.2 for the standard Boltzmann behavior.
Then one obtains μefftriplet ¼ 2.7=2.2 ≈ 1.2 which is signifi-

cantly smaller than μeffring and close to the value of unity for
standard Boltzmann behavior. This agrees with the intuitive
expectation that larger subsystems approach the standard
thermodynamic behavior.
The same effect can be seen in a 1D Ising model with

energy Etot ¼ −
P

JijSiSj and Si ∈ �1. Here, we have
compared the results for two different cases. In case A
(standard Ising model), we choose Jij ¼ 1 for two nearest
neighbors and 0 otherwise. In case B, we choose the
interaction strengths Jij ¼ 1; 2=3; 1=3 for both the first,
second and third neighbor, respectively, and 0 otherwise. In
analogy to the case of 2D silica, we first define the energy
of a spin as half of the sum of all pair energies, related to
that spin. Then, in analogy to the ring-triplets in 2D silica,
we define different subsystems via the orientation of three
adjacent spins. Taking into account the symmetry related
cases, one ends up, e.g., with AAA, BAB, and AAB
configurations for the spin triplets with degeneracy factors
ft of 2, 2, and 4, respectively (see also Supplemental
Material, SI.V [28]). The analogous analysis can be also
performed for spin quadruplets.
In a Boltzmann picture the probability to find a specific

spin triplet in equilibrium is given by Pt=ft ∝ e−βEt. Again,
Et is the average energy of the respective triplet. In full
analogy to 2D silica we find a perfect Boltzmann behavior.
Interestingly, for case B, one has to substitute β by a larger
inverse effective temperature. This suggests that βeff=β is
directly related to the interaction range and thus to the
degree of spatially correlated behavior. For the spin

quadruplets, the inverse effective temperature is lower than
for the spin triplets, which again agrees with the observed
size dependence of μ for 2D silica.
Density of states analysis.—So far we have analyzed the

properties, e.g., of rings of a given size without resorting to
the individual realization. In the next step, the configura-
tions are studied individually. Previously, the distribution of
minimized configurations (also denoted “inherent struc-
tures”) of the total system was analyzed [29,30]. Their
distribution results from the underlying density of states
GðEtotÞ, weighted by the Boltzmann factor. It is valid for
sufficiently low temperatures and low energies such that the
harmonic approximation holds [26,30,31]. Via Boltzmann
reweighting, it is possible to extract the a priori unknown
density of states GðEtotÞ, independent of the actually used
temperature. Naturally, this procedure also works for the
subensemble of defect-free states, sampled in equilibrium,
as checked for the two extreme temperatures T ¼ 0.013
and T ¼ 0.019 (see Fig. 3(b) and Supplemental Material,
SI.VI [28]).
A similar procedure is now used for the distribution of

rings of a given size r. The underlying distribution
functions grðϵrÞ are determined from Boltzmann reweight-
ing of the equilibrium distributions of these two temper-
atures. We choose the inverse temperature factor as
βeff ¼ λrβ, and minimize the deviation between both
reweighted curves, denoted χ2ðλrÞ. As shown in Fig. 3
for r ¼ 6 the optimum overlap is found for λ6 ¼ 8.0 which
is much larger than the standard value of 3 as discussed
above. Note that, except for r ¼ 9, the quality of the
overlap, as derived from the minimum of χ2ðλrÞ, is similar
as for the reweighting of the total system. The optimum
values of λr decrease with increasing ring size [see Fig. 3(c)

FIG. 2. Comparison of the logarithm of (a) complementary ring probabilities and (b) complementary triplet probabilities at T ¼ 0.015
(β ¼ 66.7) of the 2D-silica ring network, with their respective average energies. The correlation coefficients are shown in the graph. For
(a) and (b), the inverse effective temperatures are βeffring ¼ 344.5 and βefftriplet ¼ 182.5, respectively. For (b), the data are shown whenever

PtP�
t > 10−6. In (c) the probabilities of the different states of spin triplets and quadruplets for the 1D Ising model are compared with the

respective average energies at T ¼ 1.5 (β ¼ 0.67). The permutation factors for the substructures are represented by “f.” The respective
interaction range (2 or 6 neighbors) is listed in the figure. The resulting inverse effective temperatures βeffIsing from the Boltzmann fit are
0.67 (≈β) (triplets, 2 neighbors), 0.90 (triplets, 6 neighbors), and 0.78 (quadruplets, 6 neighbors).
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and SI.VII]. Thus, in analogy to the above comparison of
rings and triplets, standard behavior is approached for
larger units. We would like to remark that the value of
μring ≈ 5 is larger than typical values of λr around 8 for the
dominant ring sizes. It is satisfying that both approaches
yield a significant increase of the inverse effective temper-
atures beyond the standard value of 3β. A deeper com-
parison is difficult because in the first case one deals with
the average energies of the different ring sizes whereas in
the second case the individual energies of rings of a specific
size are compared.
Impact of additional correlations.—If we identify the

building blocks with the energies of the individual rings,
one expects that adjacent rings are correlated in energy. A
trivial reason is that the energy, related to individual atoms,
is distributed among adjacent rings. Furthermore, it is
known that, e.g., small rings like to be adjacent to large
rings [16]. One would also expect that the particle energies
within a specific ring are correlated in order to fulfil the
constraints to close that ring.
Here we show for a simple model system that correla-

tions may give rise to the emergence of a size-dependent
effective temperature in equilibrium situations. We start by
considering a system with two correlated identical sub-
systems S1 and S2 with energies e1 and e2. We assume that
the density of states gðeiÞ of Si is Gaussian with variance
σ2. We define the correlation coefficient ν ¼ he1e2i=σ2. We
require that the marginal densities of states are not modified
by this correlation. It is easy to check that these conditions
are fulfilled for the choice e2 ¼ νe1 þ ϵ1 where ϵ1 is a
random number drawn from a Gaussian distribution with
variance ϵ2 ¼ σ2ð1 − ν2Þ. As a consequence the combined
density of states gðe1; e2Þ reads

gðe1; e2Þ ¼ exp

�
−

e21
2σ2

�
exp

�
−
ðe2 − νe1Þ2

2ϵ2

�
: ð2Þ

The probability of finding the energy doublet ðe1; e2Þ in
a heat bath of inverse temperature β can be written as
pðe1; e2Þ ∝ gðe1; e2Þ exp½−βðe1 þ e2Þ�. Integrating over e2
one obtains the marginal distribution of e1

p1ðe1Þ ∝ gðe1Þe−β½ð1þνÞe1�: ð3Þ

Thus the resulting inverse effective temperature βeff ¼
ð1þ νÞβ depends on the degree of correlation. As shown in
the Supplemental Material, SI.VIII [28], this analysis can be
generalized to the case ofN subsystems where one analyzes
the energy distribution of units containing M ≤ N subsys-
tems. The above case corresponds toN ¼ 2 andM ¼ 1. One
obtains βeff=β ¼ 1þ ðN −MÞ=ðM − 1þ 1=νÞ. Thus, upon
increasing sizeM of the unit of interest, standard behavior is
approached. A possibly related size dependence for fluctu-
ations of the chemical potential is reported in Ref. [12].
Discussion.—In general one may expect deviations from

standard thermodynamics if a subsystem is small and
strongly interacting with the surrounding heat bath. For
example, the dumbbell in a solvent displays a non-
Boltzmann behavior where the average temperature, as
deduced from the average harmonic energy, is identical to
the solvent temperature. For the case of equilibrated 2D
silica we also see strong deviations from expectation.
However, we still see an approximate Boltzmann behavior
(with small deviations for the lowest temperatures), but
with an effective temperature. Note that typically effective
temperatures are used to describe nonequilibrium situa-
tions [33,34].

FIG. 3. (a) Density of states for six member rings where the reweighting was performed at λ6β. The value of λ6 ¼ 8.0 is determined by
minimizing the overlap error χ2 between the resulting density of states curves for T ¼ 0.013 and T ¼ 0.019. c represents a simple shift
parameter. We fit the density of states curves with a Gaussian function (see SI.VII for details about the Gaussian properties). All data are
plotted where probabilities for both temperatures are larger than 0.002 (thus excluding the high-energy regime where anharmonic effects
become relevant [30]). (b) The dependence of χ2=Ndof where the normalization factor denotes the number of data points minus the
number of fitted parameters [32]. The optimum λtot value for the total defect-free system is very close to its theoretical value of 1.0.
(c) The size dependence of the optimum λr values, scaled with the trivial factor of 3, are shown. For r ¼ 9 the noise is very high [see (b)]
so that λ9 should be taken with caution.
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For 2D silica, correlations between adjacent rings as well
as within rings are expected. Thus, our general model,
showing a connection of correlation and effective temper-
ature, may indeed be relevant for the understanding of 2D
silica. In qualitative agreement with the model predictions
we find that when either approaching the length scales of
triplets or that of large rings nearly standard behavior is
recovered. For the 1D Ising model we can recover these
features, i.e., the dependence on the size of the unit of
interest and the degree of correlations as tuned by the
interaction range in that case. Thus, the specific deviations
from standard thermodynamics, reported in this work, hold
beyond 2D silica. Note, however, that the model prediction
βeff=β ¼ const may be model specific (e.g., depending on
the Gaussian properties) and is, e.g., violated for the 1D
Ising model; see Supplemental Material, SI.III [28].
The key focus of the present work is the numerical

identification of small-system thermodynamic effects for
2D silica, which is an ideal model system to study small-
scale thermodynamic properties due to the presence of
well-defined local neighborhoods. Hopefully, it stimulates
further analytical or numerical work to better understand,
e.g., the emergence of apparent temperature distributions in
the low-temperature limit, extending the nonstandard
Boltzmann behavior at higher temperatures, the depend-
ence of the effective temperature on the ring size, the
quantitative relation to spatial ring correlations [16,35], or
the relation between μ and typical λr values.
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