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We study the elastic energy landscape of two-dimensional tin oxide (SnO) monolayers and demonstrate
a transition temperature of Tc ¼ 8.5� 1.8 K using ab initio molecular dynamics (MD) that is close to the
value of the elastic energy barrier J derived from T ¼ 0 K density functional theory calculations. The
power spectra of the velocity autocorrelation throughout the MD evolution permit identifying soft phonon
modes likely responsible for the structural transformation. The mean atomic displacements obtained from a
Bose-Einstein occupation of the phonon modes suggest the existence of a quantum paraelastic phase that
could be tuned with charge doping: SnO monolayers could be 2D quantum paraelastic materials with a
charge-tunable quantum phase transition.
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Structural transformations in two-dimensional (2D)
materials were first observed in transition metal dichalco-
genides [1–3] exposed to large gate and bias voltages
[1,2,4]. These phase transitions induce two-dimensional
ferroic and multiferroic behavior [5–7]. Three conditions
underpin ferroic behavior: (i) the presence of structural
degeneracies leading to a high-to-low-symmetry structural
configuration as temperature (T) is decreased, (ii) a low-
energy barrier J along the path joining the degenerate
ground states, and (iii) the existence of macroscopic
monodomains [8]. The existence of macroscopic domains
may not be granted when J is too small.
With a predicted multiferroic behavior [6], SnO mono-

layers offer an ideal test bed for this observation: similar to
2D iron sulfide (FeS), SnO monolayers have a rectangular
unit cell in their low-temperature ground state. Neglecting
quantum fluctuations, a transition temperature Tc can be
determined via molecular dynamics, beyond which these
compounds turn into a traditional litharge structure, i.e., a
square unit cell that otherwise maintains its atomistic
coordination. But while the material behavior of FeS is
driven by at least three competing energy scales of similar
magnitude (the superconducting gap, spin-splitting or
magnetic anisotropy barrier, and the elastic barrier leading
to the rectangular-to-square unit cell transformation), the
structural transformation of a pristine charge-neutral SnO
monolayer can be characterized without concern for these
competing energy scales.
In this Letter, we study the ferro- to paraelastic transition

in SnO monolayers, starting from the parametrization of
their elastic energy landscape, a discussion of their struc-
tural degeneracies, and of their elastic energy barrier
J. Using ab initio calculations of the unit cell, ab initio

molecular dynamics (MD) calculations on the NPT ensem-
ble [in which the number of electrons and ions (N) remains
fixed and pressure (P) and temperature (T) are assigned
target values], and model calculations, we demonstrate that
the structural transition temperature Tc is very similar to J.
The power spectra of the MD evolution permits identifying
soft phonon modes likely responsible for the observed
structural transformation. The Bose-Einstein occupations
of the phonon modes lead to increased atomistic fluctua-
tions that may stabilize a quantum paraelastic phase at low
temperature that is tunable via electrostatic gating.
Figure 1(a), obtained with the VASP code [9,10] that

implements the plane-wave pseudopotential approach
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FIG. 1. (a) Elastic energy landscape for the SnO monolayer
under zero doping. (b) Unit cells at the energy minimum
(structures A and B) and for the square structure at point C.
Structural order parameters are shown. (c) Energy cuts through
the black and red dashed lines shown in subplot (a).
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within density functional theory (DFT) with PBE
exchange-correlation pseudopotentials [10,11], shows the
energy landscape for a SnO monolayer. Optimizations were
performedwith forces smaller than 10−3 eV=Å and using up
to 90 × 90 × 1 k points. There, structure A has a rectangu-
lar unit cell with lattice constants a10 ¼ 4.01 Å and
a20 ¼ 3.68 Å, as highlighted by a star. O atoms have
coordinates b1 ¼ ð0; 0; 0Þ and b2 ¼ ða10=2; a20=2;−δzÞ,
whereas Sn atoms are located at b3 ¼ ða10=2; 0;ΔzÞ and
b4 ¼ ð0; a20=2;−δz − ΔzÞ, with δz ¼ 0.18 Å, and Δz ¼
1.08 Å, respectively. This way, d10 ¼ 2.28 Å and
d20 ¼ 2.23 Å. Structure B is obtained by swapping x and
y coordinates, making structuresA andB degenerate [5,8,12]
and the SnO monolayer ferroelastic [6].
PointC in Fig. 1(a) has lattice constants a1 ¼ a2 ¼ aC ¼

ða10 þ a20Þ=2, and it sits midway through the path that
joins points A and B (black dashed line). In structure C,
O atoms are located at b1 ¼ ð0; 0; 0Þ and b2 ¼
ðaC=2; aC=2; 0Þ, and Sn atoms are at b3 ¼ ðaC=2; 0;ΔCÞ
and b4 ¼ ð0; a20=2;−ΔCÞ with ΔC ¼ 1.17 Å, for an inter-
atomic distance dC ¼ 2.25 Å. Figure 1(b) shows side and
top views of rectangular structures A and B, and the
(litharge) structure C.
Defining length variables X and Y as linear combinations

of lattice parameters a1 and a2

Xða1;a2Þ ¼
a1−a2ffiffiffi

2
p ; Yða1;a2Þ ¼

a1þa2− 2aCffiffiffi
2

p ; ð1Þ

one creates the energy cuts shown in Fig. 1(c) on the energy
landscape along the dashed black line at the ðX; 0Þ direction
and the dashed red lines at the ð0; YÞ and ð�X0; YÞ
directions indicated in Fig. 1(a).
The dependence of the landscape on Y was almost

identical along the red diagonal lines in Fig. 1(a) cutting
through points A, B, and C: it is J þ cðX ¼ 0ÞY2 around
point C, and cðX ¼ X0ÞY2 around point A (or B)
with cðX ¼ 0Þ ¼ 23 042 KÅ−2=u:c: and cðX ¼ X0Þ ¼
22 364 KÅ−2=u:c:, for a negligible dependency of
the coefficient c on X; c is approximated by
½cð0Þ þ cðX0Þ�=2, to simplify the analytic description of
the 2D energy landscape

UðX; YÞ ¼ aX4 − bX2 þ cY2 þ b2

4a
; ð2Þ

with a¼4252K=Å4, b¼387K=Å2, and c ¼ 22703 K=Å2

per unit cell.
Setting UðX0; 0Þ ¼ 0, X0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb=2aÞp ¼ 0.21 Å and

inverting Eq. (1) at the analytic value of X0 ¼ 0.21 Å,
Y ¼ 0 Å, one gets a10 ¼ 3.99 and a20 ¼ 3.70 Å, which
agrees with DFT results in Fig. 1 reasonably well.
J ≡Uð0; 0Þ −UðX0; 0Þ ¼ ðb2=4aÞ ¼ 8.8 K=u:c.

When expressed in units of K/u.c., J turns out to be
almost equal to Tc, as shown via ab initioMD performed at
ambient pressure and at 12 predefined temperatures. These
calculations, performed using the NPT ensemble, require
having two walls parallel to (not in contact with) the 2D
material fixed throughout the MD evolution.
The Qbox MD code [13,14] implements the plane-wave

pseudopotential approach within DFT with highly tuned
PBE exchange-correlation pseudopotentials that were
tested against multiple other plane-wave codes for numeri-
cal consistency [14]. It permits fixing the two walls not in
direct contact with the SnO monolayer. MD data for
charge-neutral SnO monolayers are presented in Figs. 2
and 3 and discussed next.
Tc is signaled by a sudden change of lattice parameters

a1 and a2 onto aC, highlighting the importance of perform-
ing MD on an NPT ensemble to capture the transition
temperature (Tc) [5,12,15]. MD calculations were per-
formed on a 4 × 4 SnO supercell originally set at configu-
ration A, which assumes the existence of a macroscopic
domain with such atomistic configuration [condition (iii) in
Ref. [8]]. Using a 1.54 fs time resolution, we retrieved 16
000 frames and used the last 213 (¼ 8192) frames to obtain
ensemble averages and power densities in the frequency
domain for any given T.
Figures 2(a), 2(d), and 2(e) show the thermal evolution of

lattice parameters (ha1i, ha2i), interatomic distances (hd1i,
hd2i), and angles (hα1i, hα2i) [c.f., Fig. 1(b)], where hi
indicates ensemble averages. There is a sudden collapse of
these order parameters at Tc ¼ 8.5� 1.8 K, which ratifies
the ansatz Tc ¼ βJ, with β ≃ 1 suggested early on. The
thickness in Fig. 2(f) is the height difference among the
lowest and the highest atoms in the supercell, and it
captures out-of-plane undulations [12].
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FIG. 2. (a) Thermal evolution of lattice constants from MD
(data) and our model (solid trend lines). Tc ¼ 8.5� 1.8 K. (b),
(c) Mean values and expectation values of X and Y. (d),
(e) Thermal evolution of interatomic distances and angles defined
in Fig. 1(b). (f) Thickness dependence on T; the inset is a
structural snapshot during the thermal evolution.
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Together with earlier NPT MD results [5,15], the value
of Tc obtained here points to the central role of the energy
scale J in understanding multiferroicity in 2D materials.
The entirety of our MD data points to a relation Tc ≃ J.
It is illustrative to describe the structural transition right

from the energy landscape in Fig. 1. Consider a particle
there, and assign a mean kinetic energy equal to kBT=2 to
each of the 2 degrees of freedom (kB is Boltzmann’s
constant). In this classical construct, the particle has zero
potential energy and a mean kinetic energy of kBT at point
(X0, 0). The particle reaches the largest values of X and Y
when its mean kinetic energy is zero, and the condition
kBT ¼ UðX; YÞ determines the contours in the ðX; YÞ plane
the particle is confined to, as a function of T. Depending on
whether kBT is smaller or larger than Uð0; 0Þ ¼ J, the
particle is either confined to a single well (monodomain A),
or it oscillates among the two wells (i.e., the material has
transitioned).
Equation kBT ¼ UðX; YÞ has four roots: XP�ðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� ffiffiffiffiffiffiffiffiffiffiffiffiffi

4akBT
p Þ=2a

p
, and XN�ðTÞ ¼ −XP�ðTÞ, where

N (P) stands for negative (positive). Being a classical
construct, the elastic energy profile forbids direct tunneling
among the two wells, so one is constrained to [XminðTÞ ¼
XP−ðTÞ ≤ X ≤ XPþðTÞ ¼ XMaxðTÞ] when kBT ≤ J at
monodomain A. Both wells are accessible when T > J
and XminðTÞ¼XNþðTÞ≤X≤XPþðTÞ¼XMaxðTÞ. XminðTÞ
takes on two different values, depending on whether T ≤ J
or T > J.
Contours are given by Y�ðX; TÞ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBT − aX4 þ bX2 − JÞ=c

p
, and ensemble averages

within the model for any function fðX; YÞ are obtained
from Ref. [16]

hfðX; YÞi≡
R XMaxðTÞ
XminðTÞ

R YþðX;TÞ
Y−ðX;TÞ e

−U=kBTfðX; YÞdXdY
R XMaxðTÞ
XminðTÞ

R YþðX;TÞ
Y−ðX;TÞ e

−U=kBTdXdY
:

The solid lines in Fig. 2(a) are ha1i and ha2i; shaded areas
are standard deviations. These values were obtained from
Figs. 2(b) and 2(c) through an inversion of Eq. (1). The
standard deviations on a1 and a2 are equal to 0.048 Å right
below Tc. The agreement between the model and MD—
including fluctuations—is remarkable.
Despite of the small supercell size [inset in Fig. 2(f)], the

power spectral density (PSD)—the Fourier transform of the
MD data onto reciprocal space and frequency [17]—shown
in Figs. 3(a) and 3(b) displays sharp peaks that uncover the
phonon frequencies of the SnO monolayer and include
anharmonic contributions by construction. The PSD is
resolved over chemical species (with slow modes mostly
due to Sn, and overall faster modes due to O, which was
vertically shifted in these plots) and orthogonal displace-
ments L, T, and Z [16]. The supercell provides a coarse
sampling of reciprocal space that includes k points
ib1=4þ jb2=4, where b1 and b2 are reciprocal lattice
vectors and i, j range in between −2 and 2.

The rectangular unit cell imposes an asymmetry on the
PSD shown in Fig. 3(a) at T ¼ 4.0� 0.8 K < Tc, that is
best brought about by placing the spectral density at point
b2=4 over that acquired from point b1=4, and that of b2=2
over b1=2, and aided by vertical dashed lines originating
from plots b1=4 and b1=2. There, the Z mode in orange at
14 THz at b1=4 appears at a lower frequency at b2=4. In a
similar manner, the O T mode seen in gray at about 8.5 THz
at b1=4 is downshifted onto the L mode in light blue at
b2=4. A similar downshift is seen at the maximum
frequency mode at b2=2 with respect to its value at
b1=2. There is a significant spectral density at frequencies
≳0 THz and at least two closely spaced peaks at the
Γ point in Fig. 3(a). As showcased at T ¼ 16.7� 3.2 K in
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FIG. 3. PSD resolved over chemical element and spatial
direction for (a) T < Tc and (b) T > Tc. (c) Phonon dispersion
for T < Tc (left, mode resolved) and T > Tc (right). The
continuous trend was obtained at T ¼ 0 using standard methods
and is a guide to the eye. At least one phonon line above 10 THz
at the Γ point on the left subplot (vertical arrow) appears to have
gone soft to accumulate near zero frequency. Diagonal arrows
showcase lack of symmetry when T < Tc.
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Fig. 3(b), the PSD shows aligned peaks for T > Tc, thus
reflecting an enhanced symmetry.
The power spectrum is rearranged into a phonon

dispersion in Fig. 3(c) for T < Tc (left, mode resolved)
and T > Tc (right), while the overlaid continuous trend is
a phonon dispersion at 0 K, without anharmonic con-
tributions, that was obtained from the Hessian matrix at
T ¼ 0. Direct comparison of the continuous trend lines
and the PSD data shows at least one missing phonon line
above 10 THz at the Γ point on the left subplot (high-
lighted by a vertical arrow), which appears to have gone
soft to accumulate near 1 THz frequency (as suggested
by a dashed overlaid curve). The possibility of the mode
at 10 THz being absent due to the small supercell
employed still does not answer the existence of the
large spectral density near 1 THz at the Γ point seen
in Figs. 3(a) and 3(c) that does not match any phonon line
suggested by the Hessian. Diagonal arrows highlight the
reduced symmetry when T < Tc.
Ferroic behavior necessitates the feasibility of creating

macroscopic monodomains [8], i.e., that the two wells on
the elastic energy landscape are separated by a classical
wall that forbids quantum tunneling. This classical limit is
not guaranteed here due to the small value of J and the
presence of a light element (oxygen) prone to significant
zero-point, quantum fluctuations.
Using the phonon spectrum and eigenvectors obtained

from the Hessian, one can contrast the phonon energy and
the mean displacements obtained using occupations con-
sistent with bosonic quantum statistics, with the occupa-
tions resulting from a classical occupation that is linear in
temperature, and which underlies all the results presented
up to this point. The drastic enhancement in occupation
when bosonic statistics are considered may drive a quantum
paraelastic phase reminiscent of the quantum paraelectric
phase in SrTiO3 [18–20].
The energy due to phonons with a Bose-Einstein (BE)

occupation shown by a red solid line in Fig. 4(a) displays

the usual uptick at zero temperature; the classical occupa-
tion is linear in temperature, and it agrees with the quantum
occupation only at large T. The bosonic occupation in turn
produces the uptick on the rms atomic displacements at low
T [21] depicted in Figs. 4(b)–4(d), when compared with
results obtained using occupations linear in T. The solid
lines coalesce onto the dashed lines at large T.
The solid vertical line in Figs. 4(b)–4(d) is Tc, whereas
the dashed area indicates its standard deviation.
Figure 4(d) indicates that out-of-plane displacements

hΔz2i are not too dissimilar from both statistics. But in-
plane components hΔx2i and hΔy2i obtained from the BE
occupation show large excursions at T ¼ 0 already, only
attainablewith a classical occupation at higher T. Figure 4(e)
suggests that J can be increased by a slight hole doping [6]
and further decreased by either electron doping or a sub-
stantial hole doping: charge doping is a handle to get the SnO
monolayer in and out of the quantum paraelastic phase.
J depends on whether the charge added is symmetric or

asymmetric on the px and py orbitals; c.f. Table I. The
apparent correlation among a1=a2 and J in Table I is
reminiscent of that given in Ref. [5]. In turn, the location in
reciprocal space where electron charge is added or removed
seen in Fig. 5 determines the orbital character.
In the right side of Figs. 4(b) and 4(c), the in-plane rms

displacement with BE occupations may lead to a lower Tc,
as suggested by the horizontal orange arrows in
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TABLE I. Orbital character of added (negative sign) or re-
moved (positive sign) electronic charge per unit cell, ratio among
lattice parameters a1=a2, and J (K=u:c:).

q (jej) Δs Δpx Δpy Δpz a1=a2 J

−0.05 −0.019 −0.001 −0.001 −0.029 1.06 5
0.05 0.013 0.000 0.003 0.034 1.12 50
0.15 0.041 0.000 0.010 0.099 1.13 54
0.25 0.068 0.001 0.013 0.168 1.10 23
0.35 0.095 0.002 0.010 0.242 1.05 3
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Figs. 4(b) and 4(c). The renormalization of Tc is increased as
J is brought to smaller values, as displayed by larger
horizontal green lines in Figs. 4(b) and 4(c). For values
of J smaller than 21 K=u:c:, fluctuations of the order of
0.048Å—that drove the classical transition inFig. 2(a)—will
occur at 0 K already, to set the quantum paraelastic phase.
There are experimental and engineering challenges

related to sample quality and exfoliation down to mono-
layers that must be met to observe these phenomena.
The SnO monolayer limit is yet to be achieved, though
encouraging results demonstrating exfoliation down to
four monolayers and two monolayers have been recently
reported [22,23]. SnO samples that show ambipolar doping
[24,25] will be ideal to test the present predictions, and
additional control of electron doping, necessary to further
explore the paraelastic phase, may be achieved via electro-
static doping with gates [e.g., Ref. [4]].
In conclusion, we have identified charge-neutral SnO

monolayers as incipient quantum paraelastic materials,
i.e., materials in which a ferroic structural configuration
may be forbidden due to quantum fluctuations. It has been
shown that the elastic energy barrier, expressed in K/u.c., is
a reasonable estimate for the transition temperature of
charge-neutral SnO monolayers. The power spectrum
obtained directly from the MD evolution shows missing
modes, that go to lower energies prior to Tc and herald the
structural transition. The magnitude of Tc may be tuned via
charge doping, for quantum statistics to dictate the ferroic
behavior of these materials.
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FIG. 5. (a) Electronic band structure of a neutral SnO mono-
layer. Blue (red) shadowed regions point to locations of recip-
rocal space from which electrons are added (removed).
(b) Electron doping occurs around the Γ point but (c) hole
doping first happens along a shallow pocket along the Γ − Y line.
Units in (b) and (c) are jej=u:c. The Brillouin zone boundaries in
(c) reflect the change of a1 and a2 upon doping.
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