
 

Disorder-Induced Phase Transitions in the Transmission of Dielectric Metasurfaces

A. Rahimzadegan,1,* D. Arslan,2,† R. N. S. Suryadharma,1 S. Fasold,2 M. Falkner,2

T. Pertsch,2 I. Staude,2 and C. Rockstuhl1,3
1Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

2Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
3Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

(Received 3 September 2018; revised manuscript received 19 November 2018; published 9 January 2019)

Light interaction with disordered materials is both complex and fascinating at the same time. Here,
we reveal disorder-induced phase transitions in a dielectric Huygens’ metasurface made from silicon
nanocylinders that simultaneously support an electric and magnetic dipole resonance. Depending on the
degree of positional disorder and the spectral detuning of the two resonances, the phase angle of the
transmission coefficient exhibits a clear phase transition from normal to anomalous dispersion. Combined
with the considerations of whether the resonances of spectrally detuned particles appear as separated
or overlapping, we distinguish four different phase states. We study this phenomenon analytically by
employing dipole particles and disclose the entire phase diagram, support our insights with full-wave
simulations of actual structures, and corroborate the findings with experimental results. Unveiling this
phenomenon is a milestone simultaneously in the growing fields of metamaterial-inspired silicon
nanophotonics, photonics in disordered media, and the fundamental physics of phase transitions.
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Huygens’ metasurfaces made from dielectric high-per-
mittivity nanocylinders offer suppressed reflection and a
near-unity transmittance over a wide spectral range [1–3].
Ideally, the induced electric and magnetic dipole moments
in any of the nanocylinders should be identical. When
combined with the discrete rotational symmetry [Rzð2π=nÞ
for n ≥ 3] of their arrangement [4], reflection is suppressed
for all incident polarizations and the phase angle of the
transmission coefficient can be adjusted on demand [5].
Indeed, the entire phase angle range of 2π is accessible
within the spectral range of the resonances. Hence,
Huygens’ metasurfaces are a cornerstone for future pho-
tonic architectures that aim to steer light on demand with
highest efficiency [6–8].
In general, the phase angle of the transmission coef-

ficient possesses normal dispersion; i.e., the accumulated
phase angle decreases as the wavelength increases [9].
However, the near-resonance optical response of metasur-
faces is very sensitive to the spacing among neighboring
nanocylinders, and a quite far-reaching interparticle inter-
action is observed [10]. This sensitivity triggers the ques-
tion concerning the influence of positional disorder on the
spectral characteristics of such metasurfaces.
Disorder itself unlocks a plethora of physical effects

worth exploring, not only out of intellectual curiosity but
also from an application perspective [11–18]. Here, we
study the impact of positional disorder in the arrangement
of the nanocylinders on the optical response of a Huygens’
metasurfaces and reveal intriguing phase transitions in the
phase angle of the metasurface’s transmission.

Phase transitions are ubiquitous phenomena. The fas-
cination for their exploration is derived from the fact that
an incremental change to a given system in one of the
control parameters does not just give rise to an incre-
mental change in the emerging properties of the system
but, quite in contrast, gives rise to a qualitatively different
behavior at particular points of operation. There are plenty
of examples in solid state physics, where phase transitions
in material properties have been described depending on,
e.g., a critical pressure or a critical temperature [19,20].
Multiple photonic devices derive their functionalities from
such phase transitions in the material properties [21–23].
Phase transitions have also been studied in the field of
photonics. Prime examples concern the change from an
elliptical to a hyperbolic dispersion relation for certain
strongly anisotropic metamaterials at a critical wavelength
[24,25], the change from a metamaterial to a photonic
crystal [26], the change from a real to a complex valued
spectrum at the spontaneous breakdown of the PT
symmetry of a given optical potential [27,28], or the
change from a topological trivial to a topological non-
trivial band structure of a photonic material upon suitable
geometrical deformations [29].
The largest share of attention in the field of photonics has

possibly been drawn to disorder-induced phase transitions,
where they have been decisive in the exploration of
photonic band gaps [30]. Light is then said to be localized
above a critical threshold for the disorder depending on the
dimensionality [31–34]. With that, disorder was shown to
be not just a nuisance [35,36], but it constitutes a valuable
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resource on which we can capitalize to tailor the propa-
gation of light [37–39].
In this contribution, we reveal and explore disorder-

induced phase transitions in the phase angle of the trans-
mission coefficient of a Huygens’ metasurface, which are
likely to find application in novel phase-manipulating
optical devices. More technical information on all the steps
can be found in the Supplemental Material (SM) [40].
Our aim here is not to define a new universal disorder

metric, which might even be a vain endeavor [41–48], but
rather to study the effect of disorder on the optical
properties of metasurfaces in transmission. Note that the
wavelength-dependent transmission coefficient itself
already serves as a global posterior measure of disorder.
Analytical model.—In order to reveal the basic mecha-

nisms of this effect, we rely on an analytical approach in
which the electric and magnetic dipole polarizabilities of
all particles forming the metasurface are considered to be
identical and to possess a Lorentzian line shape [49–53].
Higher order multipole moments are not considered.
Particles with such identical electric and magnetic polar-
izabilities are said to have electromagnetic duality sym-
metry [54,55], and hence are called dual particles. The dual
particles defined in our analysis are isotropic and non-
absorbing point dipoles with a resonance wavelength of
λ ¼ 1 μm. The corresponding polarizabilities of these
particles were assumed to have a full width at half
maximum of 50 nm (see SM, Sec. I A).
The starting point of our analysis is a square array of dual

particles, which we refer to as a dual metasurface, with a
lattice constant of a ¼ 800 nm, and we consider trans-
mission through this metasurface. In the following, we
systematically perturb the particle positions, and hence
refer to the square array as the configuration with vanishing
positional disorder. As the simulation of an infinite array
with positional disorder is not feasible, we restrict our
analysis to an array of 17 × 17 ¼ 289 dual particles. The
metasurfaces are illuminated in the simulation by a funda-
mental transverse Gaussian beam with a waist diameter
that is smaller than the spatial extent of the finite structure.
The wavelength-dependent complex-valued transmission
coefficient in forward direction tðλÞ is calculated using an
analytical local coordinate T-matrix method [56,57] (see
SM, Sec. I B).
The analytical results for the transmission through a

metasurface with vanishing positional disorder are shown
in Figs. 1(a) and 1(b) with a dotted line and cross markers.
Figure 1(a) shows a parametric plot of tðλÞ as a function of
its real and imaginary part and the wavelength as the
parameter. The wavelengths are encoded by rainbow colors
and correspond to those used in the abscissa of Fig. 1(b).
Figure 1(b) shows the phase angle ϕtðλÞ of tðλÞ as a
function of the wavelength. As the wavelength increases,
the amplitude jtðλÞj stays near unity and ϕtðλÞ varies
over almost 2π with normal dispersion. In Fig. 1(a), this

behavior can be seen as an almost fully circular path that
circles the origin of the complex plane clockwise.
Disordered metasurfaces.—To study the effect of posi-

tional disorder on the transmission coefficient of dual
metasurfaces, we gradually perturb the particle positions
in the square array and calculate tðλÞ. We call these
arrangements as perturbed square array. In particular,
centered at each lattice site, we define a square area with
side lengths of Δr ¼ PD × a and a uniform probability
density function from which we draw the perturbed particle
coordinate. The aforementioned equation implicitly defines
the positional disorder as PD ∈ ½0; 1�. In Figs. 1(a)–1(d),
we visualized tðλÞ for 0%, 30%, 60%, and 80% of
positional disorder. There are two interesting findings
not yet discussed in the literature:
(i) Insensitivity to positional disorder.—From Fig. 1(b) it

is seen that with increasing positional disorder, prior to
reaching a critical threshold, ϕtðλÞ remains almost com-
pletely unaltered, which suggests that the phase angle
is very resistant to positional disorder. This is a very
important finding that might find applications in phase-
manipulating optical devices.
(ii) Disorder-induced phase transition.—In Fig. 1(b),

spectral regions with anomalous dispersion are observed
when the positional disorder exceeds a critical threshold.
Indeed, the advance of ϕtðλÞ above this critical threshold
is increasing with increasing wavelength. The underlying
physics can be revealed by inspecting the dispersive
behavior of tðλÞ in the complex plane, as shown in
Fig. 1(a). As the positional disorder is increased, the path
traced out by tðλÞ contracts towards a point well within the
positive real half-space. For low positional disorder, the
path circles the origin of the complex plane clockwise.
For high positional disorder, the path does not circle the
origin anymore, i.e., at a vanishing imaginary part of tðλÞ,
the real part is always positive. We take this from now on
as one objective criteria to classify our phase state. We
distinguish between phase states in where the phase angle
shows normal and anomalous dispersion, respectively. At
the critical threshold, jtðλÞj undergoes a root; i.e., the path
passes exactly through the origin, and ϕtðλÞ abruptly
changes from normal to anomalous dispersion. At this
point of operation, the metasurface radiates all the light in
nonspecular directions; i.e., the light is neither transmitted
in a forward direction nor reflected in a backward
direction. Similar to critical coupling in perfect absorbers
[58], at this phase transition, the effective electric and
magnetic dipole moments are halved in strength and hence
the forward and backward scattering is diminished.
However, unlike the perfect absorbers, where the absorp-
tion losses are the prime cause of this reduction, here, the
radiation losses due to the positional disorder are the
prime reason. A further increase in the positional disorder
only further contracts the path and ϕtðλÞ continues to
exhibit anomalous dispersion. With that we observe a
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sharp transition from normal to anomalous dispersion at a
critical threshold for the positional disorder.
Disordered and detuned metasurfaces.—Next, we study

the impact of positional disorder on spectrally detuned
metasurfaces. By spectrally detuned metasurface we refer
to a metasurface for which the electric and magnetic dipole
resonances of its particles, which up to now had been at
identical spectral position, are spectrally shifted apart from
each other by Δλres. Our analytical approach allows us to
systematically increase the spectral detuning Δλres for the
previously considered dual particles. We consider here a
range from 0 nm up to 20 nm.
For large spectral detuning of 20 nm and vanishing

positional disorder, the two resonances are clearly dis-
tinguishable from each other in the ϕtðλÞ spectrum, as can
be seen in Fig. 1(d). In Fig. 1(c), the two resonances
manifest in the complex plane as a crunode, which is a
point where the path of tðλÞ is intersecting itself and
thereby forming a loop. As the positional disorder is
increased from 0% to 85%, the path contracts again
and the crunode vanishes at a critical threshold for the
positional disorder. Above this critical threshold, the two

resonances cannot be distinguished from each other
anymore and appear instead as a single resonance.
Hence, for large spectral detuning we observe a sharp
transition from a state with spectrally split resonances to a
state with spectrally overlapping resonances at a critical
threshold for the positional disorder. Additionally, we
notice that, according to the just introduced definitions,
we always observe spectral regions of anomalous phase
angle advance independent of the positional disorder for
the detuned metasurface.
In summary, we observed disorder-induced phase tran-

sitions in two distinct properties of the ϕtðλÞ spectrum:
On the one hand, the dispersion switches from a state
with normal dispersion (ND) to a state with anomalous
dispersion (AD), and on the other hand, the apparent
number of resonances switches between a state with split
resonances (SR) to a state with overlapping resonances
(OR). In the complex plane, we distinguish between ND
and AD whether the path of tðλÞ circles the origin or not,
and between SR and OR whether the path possesses a
crunode or not, respectively. Consequently, four distinct
phase states can be identified: Phase state I (ND and OR),

FIG. 1. The effect of positional disorder on dual and detuned metasurfaces with a perturbed square array arrangement. Transmission
coefficient tðλÞ of (a),(b) dual and (c),(d) detuned metasurfaces. (b),(d) Spectra of the phase angle ϕtðλÞ of tðλÞ and (a),(c) parametric
plots of the respective tðλÞ in dependence on the wavelength. Each metasurface consists of nonabsorbing point-dipole particles that have
a Lorentzian line shape with a full width at half maximum of 50 nm, and a spectral detuning of Δλres among their electric and magnetic
polarizability resonances. The reference metasurface (PD ¼ 0%) is a square array with lattice constant a ¼ 800 nm. The wavelengths
are encoded by rainbow colors and correspond to those used on the abscissa of (b),(d). The line markers encode the degree of positional
disorder. (e) Phase diagram as a function of positional disorder PD and spectral detuning Δλres.
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phase state II (AD and OR), phase state III (AD and SR),
and phase state IV (ND and SR).
The phase diagram in Fig. 1(e) visualizes our findings

that were obtained from a systematic analysis of wide
ranges of positional disorder PD ¼ 0; 5;…; 85% and
spectral detuning Δλres ¼ 0; 1;…; 20 nm. The phase state
boundaries are smoothed for easier interpretation (see SM,
Sec. II C).
At the quadruple point of the phase diagram, the path of

tðλÞ passes exactly through the origin of the complex plane,
which marks the transition between ND and AD, and, also,
exhibits a crunode somewhere in the complex plane, which
marks the transition between OR and SR.
For infinitely extended nonabsorbing square arrays with

vanishing positional disorder, we do not observe phase state
IV. In this particular case, the crunode is forming exactly in
the origin of the complex plane, causing a direct transition
from phase state I to phase state III. For finite arrays we
observe a weak dependence of the location of the quadruple
point in the phase diagram on the array size.
Experimental result and numerical verification.—

To experimentally observe the different phase states of
ϕtðλÞ, we fabricated metasurfaces consisting of silicon
nanocylinders on a silica substrate and embedded them in a
1 μm thick silica layer (see SM Sec. VI).
The ability to alter the nanocylinders’ aspect ratio and

the square arrays’ lattice constant allows us to control the
spectral detuning of the resonances in the electric and
magnetic polarizabilities [10,59]. For a given lattice con-
stant, we optimized in an initial design process, using
COMSOL Multiphysics, the aspect ratio of the silicon nano-
cylinders of a metasurface with vanishing positional dis-
order such that the transmittance is maximized within the
spectral range of the resonances. We found for a lattice
constant of a ¼ 800 nm the optimal height (h ¼ 220 nm)
and radius (r ¼ 245 nm) of the silicon nanocylinders.
A minimum distance of 80 nm between the silicon

nanocylinders was required to avoid neighboring nano-
cylinders from merging to a single entity in the fabrication
process. Together with the finite size of these particles, the
maximum possible perturbation for our system (PDmax≈
30%) was deemed to be too small to exhibit the phase
transition from phase state I to phase state II. To observe the
different phase states, we hence resorted to a different
particle distribution with less constraints in the positioning
of the nanocylinders.
We made use of a generalized Matérn type-III point

processes for the generation of point patterns, which serve
as the center points of the silicon nanocylinders [60,61].
More precisely, we parametrized the Matérn model with
respect to two characteristic radii α and β (see SM Sec. III),
and fabricated two metasurfaces that we labeled as Matérn
type-III soft-core distributions (α ¼ 0.57 μm, β ¼ 0.8 μm)
and Matérn type-III hard-core distributions (α ¼ β ¼
0.57 μm). The resulting particle distributions are highly

uniform and isotropic, and their average particle density
was set equal to that of a square array. Scanning electron
micrographs of fabricated metasurfaces based on a square
array, perturbed square array, Matérn type-III soft-core
and hard-core distributions are shown in Fig. 2. Each of
the metasurfaces covers a square area of 2 × 2 mm2.
Statistical details of these samples are discussed in the
SM (see Sec. IV).
After fabrication, we measured the transmittance spectra

jtðλÞj2 and the phase angle spectra ϕtðλÞ of each metasur-
face. We used an interferometric custom-built white-light
spectroscopy setup capable of taking direct measurements
of the transmittance and indirect measurements of the
phase angle by means of Fourier-transform interferometry
[62,63]. In order to reconstruct the amplitude and phase
angle of the transmission coefficient as defined in the
simulations, we performed reference measurements
through the bare substrate of the metasurfaces.
By comparing the experimental results to predictions

made with the same methodology as used in the design
process but while considering slightly modified geometri-
cal parameters, we identified the geometry that is most
consistent with the measurements. A radius of r ¼ 251 nm
and a height of h ¼ 268 nm for the nanocylinders has been
identified. They slightly deviate from the ideal design
parameters due to fabrication imperfections. The lattice
constant was met precisely, as it can be controlled in the
fabrication with very high precision.
With these parameters, adapted simulations of the trans-

mission coefficients of all metasurfaces were performed by
employing the local coordinate T-matrix method. For the
numerical simulations we have used circa 441 particles
with a multipole expansion up to the octupolar order.
Figure 3 depicts a comparison of the numerical and
experimental results. In Fig. 3(a), the numerical and
experimental results show a very good agreement in the
transmission coefficient for all types of metasurfaces.
The square array metasurface is clearly in phase state I.
With increasing disorder, i.e., the sequence: square array→
perturbed square array → Matérn softcore → Matérn
hardcore, the path of tðλÞ contracts and transitions into
phase state II for the degree of disorder introduced by the

FIG. 2. Scanning electron micrographs of silicon nanocylinders
before embedding in fused silica, arranged in a (a) square array,
(b) perturbed square array, (c) Matérn type-III soft-core, and
(d) hard-core distribution. All scale bars, 1 μm.
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Matérn type-III hardcore metasurface. Figure 3(b) empha-
sizes on the experimentally observed anomalous dispersion
of the phase angle of the transmission coefficient for above-
threshold disordered metasurfaces. In the SM Sec. V, we
have included another set of experiments which demon-
strates the transition from phase state III to phase state II.
In conclusion, we have reported a previously unknown

feature of disordered dielectric metasurfaces: By increasing
the disorder in the particle positions of a Huygens’
metasurface above a critical threshold, the advance in
the phase angle of the transmitted light can be switched
from normal dispersion to anomalous dispersion. As the
spectral detuning between the electric and magnetic dipole
resonances increases, we have shown that the threshold in
the positional disorder decreases for the transition from the
normal to the anomalous dispersion phase state, and that it
increases for the transition from the overlapping to the split
resonances phase state. Finally, we performed full wave
simulations of realistic structures and corroborated our
findings with experiments. Our findings, from a funda-
mental point of view, are important in understanding
complex light interaction in disordered media. We expect
our insights to open yet another door for a variety of
applications in the field of disordered photonics [11].
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