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Acoustic emission (AE) measurements performed during the compressive loading of concrete samples
with three different microstructures (aggregate sizes and porosity) and four sample sizes revealed that
failure is preceded by an acceleration of the rate of fracturing events, power law distributions of AE
energies and durations near failure, and a divergence of the fracturing correlation length and time towards
failure. This argues for an interpretation of compressive failure of disordered materials as a critical
transition between an intact and a failed state. The associated critical exponents were found to be
independent of sample size and microstructural disorder and close to mean-field depinning values.
Although compressive failure differs from classical depinning in several respects, including the nature of
the elastic redistribution kernel, an analogy between the two processes allows deriving (finite-) sizing
effects on strength that match our extensive data set. This critical interpretation of failure may have also
important consequences in terms of natural hazards forecasting, such as volcanic eruptions, landslides, or
cliff collapses.
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Classical fracture and failure theoretical frameworks or
criteria, such as Griffith theory or the Coulomb failure
criterion, do not consider material disorder. Consequently,
they predict an abrupt global failure, without any precur-
sory phenomenon. In that sense, failure can be interpreted
as a first-order transition from an intact to a failed state, as
Griffith theory was inspired by the classical theory of
nucleation [1,2]. Materials heterogeneity has been, how-
ever, considered for a long time, especially to account for
failure strength variability and associated size effects [3].
Nevertheless, this weakest-link approach is based on strong
assumptions, such as the absence of mechanical inter-
actions between defects and between rupture events or a
global failure dictated by the activation of the largest flaw
(the weakest link). These assumptions might appear rea-
sonable for weakly disordered materials under tension,
especially in the case of a preexisting large crack or notch.
However, in the case of a large enough disorder, the
quasistatic propagation of such a crack can be interpreted
as a dynamical critical transition [4,5]. The limitations of
these classical frameworks appear even clearer for highly
disordered systems without macroscale heterogeneities [6]
and/or loading conditions stabilizing crack propagation,
such as compression (through the presence of friction).
In those cases, it has been known for a long time that
failure is a process, involving the nucleation, interaction,
propagation, and coalescence of many microcracks [7,8],
hence characterized by precursory phenomena. The pres-
ence or absence of precursors to failure and faulting
has obvious consequences in terms of natural hazards

forecasting, for, e.g., earthquakes [9,10], cliff collapses
[11], landslides [12], or volcanic eruptions [13,14].
The failure of heterogeneous media has been extensively

studied over the last 30 years [1,15], essentially on the basis
of theoretical and numerical models such as fiber-bundle
(FBM) [16], random-fuse (RFM), random-spring (RSM)
[17], or progressive damage (PDM) [2,18,19] models.
However, the nature of the associated transition remains
controversial. In the limit of infinite disorder, fracture can
be mapped onto the percolation problem [20]. For bounded
disorder, a FBM with equal-load sharing, corresponding to
a mean-field approximation, exhibits a critical behavior
with the rate of bundle breaking per increasing stress
diverging at the critical point (the failure) [16]. A critical
transition was also reported for a PDM of compressive
faulting, with the average damage avalanche size, the
correlation length of damage [19], or the largest damage
cluster [2] all progressively increasing during the loading
history and diverging at failure. This interpretation is also
consistent with a mapping of the faulting problem onto the
depinning transition [21]. On the other hand, for RFM and
RSM with large (but finite) disorder, it has been claimed
that there is no diverging correlation length at failure
[17,22], consistent with a first-order transition interpreta-
tion of failure in those models [23]. Besides the nature of
the transition, this raises the question of the role of the
disorder strength on failure precursors.
This debate calls for experimental data, which are

still sparse and disparate. Power law distributions of
acoustic emission (AE) energies released by damage and
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microcracking, PðEÞ ∼ E−β, have been frequently reported
and presented as evidences of “criticality” in a broad sense.
For highly porous [24,25] or cellular [26] materials under
compression, the AE event rate dN=dt or the energy
distribution do not exhibit significant trends as approaching
failure, possibly as the result of a transient hardening
mechanism [27], whereas the (stable) power law proba-
bility density function (PDF) of energies is accompanied by
Omori-like aftershocks triggering. However, other authors
reported an acceleration of the event rate (time-reversed
Omori’s scaling) towards failure for materials with a
porosity larger than 30%, but an exponential growth (hardly
compatible with the critical point hypothesis) for lower
porosities [28,29]. In low-porosity rocks, a progressive
localization of damage before faulting under compression
has been revealed from either AE [7,30] or x-ray tomog-
raphy [31,32]. In this last case, the damage rate, defined as
the rate of increasing crack-induced porosity, as well as the
size of the largest microcrack, were found to power law
diverge as approaching global failure, arguing for an
interpretation of compressive faulting as a critical transition
[32]. Criticality was also argued for the flexural failure of
composite materials from a divergence of the AE energy
release [33].
Hence, despite these various hints, experimental evi-

dence is still lacking to ascertain this critical interpretation
of failure, determine the critical exponents, check their
universal character, and precisely identify the role of
internal disorder. To do so, we performed compression
tests and AE measurements on an emblematic quasibrittle
heterogeneous material, concrete. Cylindrical samples with
a constant aspect ratio (L=D ¼ 2) but four different sizes
(L ¼ 80, 140, 220, 320 mm) were prepared following
French standards [34] and from three different concrete
mixtures based on different aggregate sizes (fine F, i.e.,
only sand, mediumM, and coarse C). Disorder consisted of
aggregates, sand particles, and pores, with a larger porosity
for F concrete (ϕ ¼ 4.8%) than for M (1.6%) and C
concrete (1.5%). The microstructures as well as the elastic
properties were sample size independent, indicating that
even the smallest samples were larger than the represen-
tative volume elements of the materials [35]. The prepa-
ration procedure and the microstructural characterization of
our materials have been detailed elsewhere [35].
Uniaxial compression was applied on each sample at a

constant stress rate of 0.5 MPa=s, corresponding to a strain
rate between 2.4 × 10−5 and 3.2 × 10−5 s−1. Loading was
automatically stopped upon catastrophic failure, when the
load dropped below 50% of peak load. Two (for L ¼
80 mm samples) to four (for L ¼ 140, 220, and 320 mm
samples) piezoelectric AE sensors with a frequency band-
width of 20–1200 kHz were coupled directly to the
samples’ sides using a silicon paste, and their signals were
preamplified at 40 dB. A standard procedure was used to
detect AE bursts over a 30 dB amplitude threshold, and

their characteristics (maximum amplitude Vmax, energy E,
duration T) were saved. A scaling analysis between Vmax
and T (see Supplemental Material [36]) indicates that the
recorded voltage VðtÞ is a good proxy of the seismic
moment release rate; i.e., T is a reasonable estimate of the
duration of the fracturing event, for timescales larger than
∼100 μs. This allowed tracking the fracturing process up to
macroscopic failure, materialized by the development of an
inclined fault throughout the sample. For each material,
four tests were performed for L ¼ 80 mm samples and two
tests for L ¼ 140, 220, and 320 mm samples. The critical
exponent values reported below result from an averaging
over all these tests and all sensors.
We define the reduced control parameter as Δ ¼

ðσf − σÞ=σf, where σf is the peak (i.e. failure) stress,
and conjecture that failure (Δ ¼ 0) is a critical point.
Figure 1 shows the evolution of the intermittent AE activity
during a typical test, where the event rate, total energy
release, and maximum energy of events accelerate towards
failure. Figure 2 shows the AE event rate diverging towards
failure following dN=dΔ ∼ Δ−p with a maximum like-
lihood estimate [14] of p ¼ 2=3� 0.05, independent of
sample size [Fig. 2(a)] and material disorder [Fig. 2(b); see
also Supplemental Material [36]]. Such time-reversed
Omori’s law [46] has been reported for the compressive
failure of various porous materials (14% ≤ ϕ ≤ 40%)
[27–30,47], though with a varying p value, possibly
depending on the strain rate [47]. In our low-porosity
but disordered quasibrittle materials, under our stress-
controlled protocol, p was found to be independent of
both external and internal (disorder-related) scales.
This is accompanied by a progressive evolution of

the distribution of AE energies as approaching failure

FIG. 1. Evolution of the AE activity during a stress-controlled
compression test on a sample of length L ¼ 160 mm of M
concrete. (Blue curve) load; (green curve) cumulated number of
AE events; (black curve) same as the green one for a theoretical
time-reversed Omori’s law with parameters estimated from a
maximum likelihood method (see Supplemental Material [36]);
(red) AE energy release rate, sampled at 100 Hz. The black dotted
line represents the observed failure (maximum) stress, while the
black dashed line represents the failure stress predicted from the
theoretical time-reversed Omori’s law.
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[Fig. 3(a)]. In the early stages of loading, the energy
cumulative distribution (CDF) Pð>EÞ is clearly truncated
towards large energies, but the associated upper cutoff
increases as fracturing goes on. Close to failure (Δ → 0), a
power law CDF is recovered, Pð> EÞ ∼ E−βþ1, over ∼5
orders of magnitude, without detectable upper cutoff
[Fig. 3(a)]. We therefore conjecture an evolution of the
PDF PðEÞ ∼ E−βEfðE=E�Þ, where fðxÞ rapidly vanishes
for x > 1 and a cutoff energy diverges at the critical point
E� ∼ Δ−γE . From this, we recover a nontruncated power
law distribution at failure PðEÞ ∼ E−βE , while the sweeping
of an instability [48] predicts another power law PðEÞ ∼
E−θE with θE ¼ βE þ 1=γE for the stress-integrated PDF
[Fig. 3(b)]. Our results support this conjecture with the
exponents βE ¼ 1.4� 0.06 and θE ¼ 1.75� 0.04 not
varying significantly with the sample size or the disorder.
For each data set (one sensor on one sample), the exponents
were determined from a maximum likelihood methodology
[49]. This yields γE ¼ 1=ðθE − βEÞ ¼ 3.3� 0.5, a result
that can be confirmed from a data collapse analysis
[Fig. 3(a)]. Combined with inverse-Omori acceleration,
this evolution of energy distributions, which itself means an
increase of the average energy hEi towards failure, implies
a divergence of the energy release rate dE=dΔ ∼ Δ−α. We
observed such evolution, independent of both sample size
and disorder, however, with an exponent a ¼ 1.3� 0.1
smaller than expected from a simple analysis (see
Supplemental Material [36]). Note that accelerations of
the event rate and the energy release rate have been
observed during the compressive failure of highly porous
materials, although the energy distributions, and so hEi,
remained unchanged in this case. This indicates that these
features are more generic than critical failure [27].
To translate this evolution of AE energies in terms of

fracture size and correlation length, we consider an elastic
crack model whose underlying hypotheses are (i) a com-
pact (nonfractal) incremental crack or fault area A, (ii) an

average slip or displacement proportional to the crack or
fault “radius” hui ∼ r ∼ A1=2, (iii) an r-independent stress
drop, and (iv) a constant scaled energy, i.e., a radiated
acoustic or seismic energy simply proportional to the
potency P0 ∼ huiA (or the seismic moment if multiplied
by an elastic modulus). Such models are classical in AE
analysis or seismology for both mode I cracks [50] or shear
faults [51,52], well supported by available data [36], and
lead to E ∼ r3 for the radiated acoustic energy. However,
they differ from a depinning model of a planar fault [21,53]
where the average slip hui is independent of r, and ruptures
can be fractal with df ≤ 2, hence P0 ∼ rdf . However, mean-
field depinning also predicts a nonproportional scaling
between the energy and the potency (or “size”) of the
avalanche E ∼ P3=2

0 [54,55]. Taking the limiting case
df ≈ 2, this gives E ∼ r3 as for elastic crack models,
though from a subtly different framework. This scaling
yields, for the cutoff incremental rupture radius,
r �3 ∼E� ∼ Δ−γE . Further identifying r� with the correlation
length ξ of the fracturing and faulting process, one gets a
divergence ξ ∼ Δ−ν with ν ¼ γE=3 ¼ 1.1� 0.2 for Δ → 0.
Similarly, an analysis of duration distributions during

loading argues for a similar scaling PðTÞ ∼ T−βT gðT=T�Þ,

FIG. 2. AE event rate dN=dΔ (left) for different sample sizes of
F concrete, and (right) for the three different materials. Curves on
the left were averaged over all sensors and all samples of a given
size and on the right on all sensors and samples (whatever the
size) of a given material.

FIG. 3. Evolution of the distributions of AE energies and
durations as approaching failure. (a) CDFs of AE energies at
different distances to failure Δ, for a test on a 110 mm sample of
M concrete. Each distribution is built from at least 300 events.
(Inset) Data collapse of the same data in a rescaled plot. Other
sample sizes and materials give similar results. (b) Near failure
(red diamonds) and stress-integrated (blue circles) cumulative
distribution of AE energies for a test on a 40 mm sample of F
concrete. Other sample sizes and materials give similar results.
(c) Same as (a) for the cumulative distributions of AE durations
above 50 μs. At smaller timescales, the measured AE durations,
influenced by wave scattering and seismic coda, are not a good
proxy of avalanche durations (see Supplemental Material [36]).
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with a cutoff duration diverging at the critical point T� ∼
Δ−γT and exponents βT ¼ 2.0� 0.15, θT ¼ 2.9� 0.1, and
γT ¼ 1.1� 0.3 independent of disorder and sample size
[Fig. 3(c)]. Although the uncertainty on these duration
exponents is larger than for the energy distributions, this
suggests z ¼ γT=ν ≈ 1 for the dynamic exponent of the
critical transition.
The power law distribution of microseismic energies and

durations near failure, as well as the divergence of the rate
of fracturing events, fracturing correlation length, and
associated duration as approaching failure, are strong
evidence for an interpretation of the compressive failure
of low-porosity disordered materials as a critical transition,
where the failure stress identifies as the critical point.
This is further supported by the independence of the critical
exponents relative to sample size and disorder.
Theoretically, this critical interpretation could be checked
from a finite-size scaling analysis of energy and duration
PDFs obtained from samples of different sizes. We did not
find, however, a fully convincing L dependence in our
data, most likely because (i) the size range explored was
limited (Lmax=Lmin ¼ 4) and (ii) the necessarily limited
experimental data statistics make the analysis of extremes
difficult.
From these results, the nature of the critical transition

and its possible affiliation to a particular universality class
can be further discussed. A mapping of the problem of stick
slip along an existing fault to the depinning of an elastic
interface was proposed 20 years ago [21,53]. More
recently, a similar analogy was proposed in case of
compressive failure to account for statistical size effects
on strength [56] (see below). Indeed, quasibrittle failure
shares fundamental ingredients with the depinning tran-
sition, including a local threshold mechanism, disorder, and
elastic interactions. Our results reveal a similar phenom-
enology of avalanches as approaching the critical point,
with experimental exponents remarkably close to mean-
field depinning ones [54,57,58] (see Supplemental Material
[36]). On the other hand, several differences between the
two problems can be stressed. First, the time-reversed
Omori’s scaling of the avalanche rate is not present in
classical depinning, meaning that an additional exponent p
is required to describe the failure transition. In addition, the
nature of the elastic interaction kernel differs. Unlike for
depinning, it is nonconvex in our case [56,59], allowing
localization of damage along a fault, much like for the
yielding transition in amorphous plasticity [60,61]. It is also
non-negative, meaning that it has unstable modes, differing
on this point from the yielding transition [59]. Although
these differences preclude a direct affiliation of our problem
onto the universality class of classical depinning, the
scaling of the fracturing correlation length ξ ∼ Δ−ν, with
an exponent very close to mean-field depinning (νMF ¼ 1
[57]), suggests that some theoretical results could be
tentatively transposed to our problem. In particular, we

can expect a finite-size effect on failure stress, yielding the
following scaling laws for both the mean

hσfi ¼ σ∞ðL=LmÞ−1=νFS þ σ∞ ð1Þ

and the standard deviation

δðσfÞ ¼ σ∞ðL=LδÞ−1=νFS ; ð2Þ

where σ∞ is the asymptotic strength of infinitely large
systems, and Lm and Lδ are length scales related to the
microstructural disorder characteristic length scale [56].
The classical assumption is νFS ¼ ν [62], allowing one to
relate the critical nature of the failure process to statistical
size effects on strength. The above predictions were
recently confirmed from an extensive series (527) of similar
compression tests on the same materials and the same
sample sizes (though without AE monitoring), using a
mean-field depinning prediction for the exponent, νFS ¼ 1
[35]. Here we reanalyzed these data using the AE-derived
exponent νFS ¼ ν ¼ 1.1. While the length scales Lm and Lδ

(obtained from best fitting of the above equations with the
data, taking νFS ¼ 1.1) strongly depend on the material,
and particularly its pore structure, the asymptotic strength
σ∞ was found to be essentially independent of the micro-
structural disorder. Consequently, the universal character of
Eqs. (1) and (2) to account for experimental size effects on
compressive strength of quasibrittle materials can be
demonstrated on a rescaled plot (Fig. 4). Beyond an
independent confirmation of the pertinence of the theo-
retical framework, these results strikingly illustrate the
usefulness of statistical physics theoretical concepts
accounting for the mechanical behavior of disordered

FIG. 4. Size effects on the average strength (left) and the
associated standard deviation (right) of three types of concrete
from a statistical data set of 527 compression tests. In these plots,
the external sample diameter (D) is normalized by the internal
(disorder-related) scales Lm (left) and Lδ (right), and the
asymptotic material-independent strength is σ∞ ¼ 36.2 MPa.
The dotted lines represent the finite-size scaling predictions with
νFS ¼ 1.1 (see text for details). (Insets) Same data in rescaled
plots to show the asymptotic strength or the vanishing fluctua-
tions towards the thermodynamic limit [limL→∞δðσfÞ ¼ 0].
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quasibrittle materials and, in the end, constrain engineering
regulations [35].
The present work is also important in the context of a

possible forecast of geophysical hazards. Time-reversed
Omori’s scaling has been proposed to forecast volcanic
eruptions from seismic data [63], though with a large
forecast uncertainty inherent in the form of this law (rate
diverging towards the critical point) [14]. An evolution of
the energy distribution of seismic signals, similar to that
reported in Fig. 3(a), has been reported within 2 h before a
chalk cliff collapse [11], but additional analysis would be
needed to precisely check this analogy in terms of mech-
anisms and critical exponents. The possible prediction of
large, devastating earthquakes is a long-standing, still
unsolved problem. Many large earthquakes seem to be
preceded by foreshocks, and a time-reversed Omori’s law
as well as a divergence of the seismic moment release rate
have been sometimes reported [10]. However, these pre-
cursory phenomena are far from ubiquitous [9,64], and
foreshocks could actually be just an expression of cascades
of triggered seismicity implying that earthquakes are
“predictable” to the same degree, whatever their size
[65]. Hence, the use of these potential precursors as a
forecasting tool remains elusive. This raises fundamental
questions, such as the difference between the compressive
failure of initially unfaulted rocks [31,32] and the earth-
quake nucleation along a preexisting crustal fault, and calls
for further theoretical and experimental work as well as
geophysical data analysis.
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[59] V. Démery, V. Dansereau, E. Berthier, L. Ponson, and J.

Weiss, arXiv:1712.08537.
[60] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proc. Natl. Acad.

Sci. U.S.A. 111, 14382 (2014).
[61] B. Tyukodi, S. Patinet, S. Roux, and D. Vandembroucq,

Phys. Rev. E 93, 063005 (2016).
[62] O. Narayan and D. S. Fisher, Phys. Rev. B 48, 7030

(1993).
[63] I. Main, Geophys. J. Int. 139, F1 (1999).
[64] M. Bouchon, V. Durand, D. Marsan, H. Karabulut, and J.

Schmittbuhl, Nat. Geosci. 6, 299 (2013).
[65] A. Helmstetter and D. Sornette, J. Geophys. Res. 108, 2483

(2003).

PHYSICAL REVIEW LETTERS 122, 015502 (2019)

015502-6

https://doi.org/10.1038/s41598-017-13226-1
https://doi.org/10.1038/s41598-017-13226-1
https://doi.org/10.1038/346837a0
https://doi.org/10.1038/346837a0
https://doi.org/10.1038/351391a0
https://doi.org/10.1038/351391a0
https://doi.org/10.1002/2014GL059965
https://doi.org/10.1002/2014GL059965
https://doi.org/10.1029/2001JB000670
https://doi.org/10.1029/2001JB000670
https://doi.org/10.1088/0034-4885/67/8/R03
https://doi.org/10.1088/0034-4885/67/8/R03
https://doi.org/10.1111/j.1365-246X.1989.tb05255.x
https://doi.org/10.1111/j.1365-246X.1989.tb05255.x
https://doi.org/10.1103/PhysRevE.96.023004
https://doi.org/10.1103/PhysRevE.96.023004
https://doi.org/10.1140/epjst/e2012-01571-9
https://doi.org/10.4294/jpe1952.43.1
https://doi.org/10.4294/jpe1952.43.1
https://doi.org/10.1029/2004GL020781
https://doi.org/10.1029/2004GL020781
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1016/S0370-1573(98)00008-8
https://doi.org/10.1146/annurev-conmatphys-031113-133838
https://doi.org/10.1146/annurev-conmatphys-031113-133838
https://doi.org/10.1073/pnas.1403500111
https://doi.org/10.1073/pnas.1403500111
https://doi.org/10.1103/PhysRevE.49.R2532
https://doi.org/10.1103/PhysRevE.87.022126
http://arXiv.org/abs/1712.08537
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1103/PhysRevE.93.063005
https://doi.org/10.1103/PhysRevB.48.7030
https://doi.org/10.1103/PhysRevB.48.7030
https://doi.org/10.1046/j.1365-246x.1999.00004.x
https://doi.org/10.1038/ngeo1770
https://doi.org/10.1029/2002JB001991
https://doi.org/10.1029/2002JB001991

