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We report an experimental measurement of the rms temperature (σT) profiles in two regions inside a
large aspect ratio (Γ ¼ 4.2) rectangular convection cell. It is found that, in the region where the boundary
layer is sheared by a large-scale wind, σT has a power-law dependence on the vertical distance (z) from the
plate, whereas in the region where plumes are abundant, σT has a logarithmic dependence on z. The power-
law profile may be understood by balancing the inertia force and the viscous force in the equations of
motion, and the logarithmic profile may be understood in terms of the balance between the buoyancy and
the inertia forces. When normalized by a convective temperature scale, θ�, the profiles of σT collapse onto a
single curve for different values of the Rayleigh number. This shows that the convective temperature first
proposed by Deardorff is the suitable temperature scale outside the thermal boundary layer for both
logarithmic and power-law profiles. Our finding suggests a strong connection between plumes and the
logarithmic rms temperature profile. The present Letter reveals that multiple force balance mechanisms can
coexist in the bulk of highly turbulent flows.
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The shape of velocity and temperature profiles in
turbulent flows above a surface determines the momentum
and heat transport in the region concerned, and they in turn
are determined by the balance of the various force terms in
the related equations of motion. An example is the classical
work of Priestley on natural convection over a flat surface
that models the atmospheric boundary layer (ABL); using
a similarity argument, he suggested that the root-mean-
square (rms) temperature profile has a power-law depend-
ence on the distance from the surface, i.e., σT ∼ z−1=3 [1].
In the late 1980s, and in connection to turbulent thermal
convection, a scaling theory was proposed by Castaing
et al. to explain the observed heat transport property from
convection experiments [2]. Based on the scaling model of
Castaing et al., Adrian obtained different types of the rms
temperature profiles [3]. Depending on which of the two
scenarios proposed in the Castaing et al. model, the profile
can take either logarithmic or power-law form. Assuming
their velocity matches the fluctuating velocity of the core as
the plumes enter the bulk from the so-called convective
layer (or mixing zone), Adrian derived a power-law profile
for the rms temperature, i.e., σT ∼ z−1=2, and termed this the
λ-I model. If, on the other hand, it is the temperature scale
of the mixing zone that matches the fluctuating temperature
of the bulk, then one obtains a logarithmic profile, i.e.,
σT ∼ lnðzÞ, which Adrian called λ-II model. Although
based on different assumptions and physical pictures,
both models produce a logarithmic profile for the rms
velocity and the same scaling for the global heat transport,

i.e., Nu ∼ Ra2=7, where the Nusselt number Nu is the
nondimensional heat flux and Ra the Rayleigh. As shown
by Adrian, these two models imply different local force
balances; the λ-I model implies a balance between the
inertia and viscous forces and the λ-II model implies a
balance between buoyancy and inertia forces. The predic-
tions, either the one by Priestley or the ones by Adrian,
however, have not been unambiguously verified by experi-
ments. Limited by either measurement precision or the
range of distance, some of the earlier experiments were
not able to convincingly distinguish between power law
and logarithmic profiles [4–7]. In some of the more recent
studies, power-law scaling was observed [8–11], but the
reported scaling exponent from different studies was quite
different from one another and for the same study the
exponent was found to depend on both Ra and the aspect
ratio of the apparatus.
In this Letter we report experimental measurements of

the rms temperature profile in turbulent Rayleig-Bénard
convection (RBC), a paradigmatic system widely used
in studying thermally driven turbulent flows in nature
[12–15]. Three control parameters are used to characterize
this system: the Rayleigh number Ra ¼ βgΔTH3=νκ, the
Prandtl number Pr ¼ ν=κ, and the aspect ratio Γ ¼ L=H,
where g is the gravitational acceleration, H and L corre-
spond to the height and lateral length of the system, ΔT is
the temperature difference across the fluid layer, and β, ν, κ
are the volume expansion coefficient, kinematic viscosity,
and thermal diffusivity of the working fluid, respectively.
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In the experiment Ra varied from 3.2 × 107 to 2 × 108.
The lower and upper limits of the Rayleigh number were
chosen such that a well-organized large-scale circulation
would be present in the convective flow while the non-
Oberbeck-Boussinesq effect remains negligible. Degassed
and deionized water was used as the working fluid and
maintained at a mean temperature of 40°C (Pr ¼ 4.34). The
cell was placed in a thermostat maintained at T ¼ 40°C.
The convection cell is of a rectangular shape with its

length L, width W, and height H equal to 249 × 75×
59 ðmmÞ, respectively, so the aspect ratios in the length
direction is Γ ¼ L=H ¼ 4.2, and that in the width direction
is 1.3. The top and bottom plates of the cell are made of
copper and the sidewall Plexiglas. For other details of
the cell, we refer to Ref. [16]. A schematic sketch of the
convection cell is shown in Fig. 1. The geometry of the
convection cell offers two major advantages. The first one
is that, with the quasi-2D geometry, the large-scale circu-
lation (LSC) would be largely confined in a vertical plane
[16]. This would eliminate the azimuthal motion of the
LSC and reduce the associated temperature fluctuations
arising from the stochastic dynamics of LSC such as its
azimuthal meandering, sloshing, and torsional motions
[17–21]. The second one is, as the measurement regions
are far from sidewall, the impact from sidewall on the rms
temperature profile can be eliminated. It is known that with
this Γ the LSC would be a two-roll structure [22]. We can
then identify two regions with different flow dynamics.
In the first region, the thermal boundary layer is sheared
by a large-scale wind, which can be regarded as a shear-
dominated region (marked by “A” in Fig. 1, midway
between the left sidewall and cell center), while in another
region, the plumes concentrate and move upwards, which is
called plume-abundant region (marked by “B” in Fig. 1, at
cell center). rms temperature profiles were measured in
these two regions (see red and blue dashed lines in Fig. 1),
using a thermistor (∼0.3 mm in size) attached to a movable
thin stainless steel tube. The vertical measuring positions
were from 0.7 mm to 29.4 mm and the measurement time
at each vertical position varied from 1 to 2 hours, which
corresponds to 14 244 to 18 711 free-fall time unit for the
lowest and highest Rayleigh number, respectively.
Plotted in Fig. 2 are temperature time series taken at

the shear-dominant and plume-dominant regions and
at two heights from the bottom plate, z=λth ≈ 2 (left panel)
and z=λth ≈ 20 (right panel), respectively. The thermal
boundary layer thickness, λth, estimated using the

equation λth ¼ H=2Nu, equals 1.0 mm for the present
Ra (≈1.1 × 108). Figures 2(a) and 2(c) show that, very
close to the bottom plate, the temperature signal is char-
acterized by intense upward peaks, which are signatures
of hot plumes detaching from thermal BL. Figures 2(b)
and 2(d), on the other hand, show that, away from the BL,
the fluctuations in the plume-abundant region B is much
stronger than in the shear-dominated region A. This is
quantified by the rms temperature measured at the near-
center height z=λth ≈ 20 in the two respective regions for
different values of Ra, as shown in Fig. 2(f). In the figure,
circles were measured from region A and squares from
region B. The figure also shows that fluctuation intensity in
the plume-dominant region increases faster with Ra than
that in the shear-dominant region. In contrast, as shown in
Fig. 2(e), near the BL, the rms value measured in the two
regions are comparable in magnitude for all Ra values.
Figure 3 shows the probability density function of the
normalized temperature fluctuations for seven Rayleigh
numbers corresponding to the same positions as in Fig. 2.
We see that, near the BL, the PDFs from the regions A and
B are very similar, both are positively skewed owing to
the emission of hot plumes. Whereas, near the center PDFs
from the plume-abundant region B are much more skewed
toward the positive. These results are consistent with those
from Fig. 2. It is also seen that the PDFs for different Ra
collapse on top of each other, this is an indication that the
flow pattern remains the same for all values of Ra. Figures 2
and 3 show that very close to the boundary layer the
measured temperature signals from the shear-dominated
and plume-abundant regions are rather similar, whereas
away from the BL they are very different for the two

FIG. 1. Schematic drawing of experimental apparatus. A: shear-
dominated region; B: plume-abundant region.

FIG. 2. (a)–(d) Temperature time series measured at
Ra ≈ 1.1 × 108. Top panel: in the wind-shearing region A. Middle
panel: in the plume-abundant region B. (e) and (f) rms temper-
ature versus Ra; circles: data taken in region A; squares: data
taken in region B.
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regions. This reflects the different flow dynamics in the two
regions above the BL.
We now examine the rms temperature profiles.

Figure 4(a) plots σT versus zmeasured in the wind-shearing
region A for different Ra in a log-log scale. It is well-known
that the rms temperature profile in turbulent convection
first increases and then decreases when moving away from
the plate, with its peak position roughly coinciding with
the edge of the thermal BL, so that this peak position can
also be used as an alternative measure of the BL [5,23].
As the related theoretical models all concern profiles in the
convective layer or mixing zone, we shall focus on data
points outside the thermal BL, i.e., those points beyond the
peak position (shown as solid symbols in the figure).
The solid lines in Fig. 4(a) represent power-law fits to
the respective data set. The fitting for most cases cover a
vertical range of over one decade (from z ¼ 1.4 mm to
z ¼ 20.7 mm), with the obtained scaling exponent α
(σT ≈ zα), varies from 0.55 to 0.62. Note that the data
points at z ¼ 30 mm (corresponding to cell center position)
do not follow the power law. It is known that turbulent
temperature and velocity fluctuations are nearly homo-
geneous and isotropic in the central region of the cell
[6,24,25], so temperature fluctuations close to the cell
center show no positional dependence.
Since most of the data used in the fitting are far away

from the BL, molecular conductivity would be less impor-
tant. We use the so-called Deardorff convective temperature
scale [26], defined as θ� ¼ Q0=ðQ0gβHÞ1=3, and the height
of the fluid layer, H, as characteristic temperature and
length scales for normalization. Here, Q0 is the total heat
flux transported in the system. In Fig. 4(b), we plot the
normalized temperature fluctuation σT=θ� versus the nor-
malized vertical distance z=H. We see that outside the
BL the profiles collapse nicely onto a single curve after

normalization, indicating universality for normalized σT
profiles with respect to Ra. As σT=θ� shows no dependence
on Ra, we average the solid data points in Fig. 4(b) for the
respective vertical positions, and denote them as hσT=θ�iRa.
Figure 4(c) shows a log-log plot of the resultant hσT=θ�iRa
versus z=H. The solid line represents a power-law fit to the
data, hσT=θ�iRa ¼ 0.54ðz=HÞ−0.57�0.01 [for reference, the
same line is also shown in Figs. 4(b) and 4(d)]. The error
bars in the figure are the standard deviations of σT=θ� for
different Ra and the maximum fitting error is less than 4%.
For comparison, we plot the same data in semilog scale in
Fig. 4(d), which clearly shows that the rms temperature
profile in the wind-shearing region does not have a
logarithmic dependence on distance. The absolute value
of the power-law exponent obtained here is larger than
either the −1=3 predicted by Priestley’s self-similarity
theory [27] or the −1=2 predicted by Adrian’s λ-I model
[3], but is closer to the latter.
Figure 5(a) plots the temperature rms profiles measured

in the plume-abundant region B in semilog scale. Again, we
focus on regions outside the BL. The lines in the figure
represent the logarithmic fits to the individual data sets,
with the distance varying over one decade. Applying the
same normalization as before, we plot σT=θ� versus z=H in
Fig. 5(b). The nice collapse of data points shows that there
is universality for the normalized rms temperature profiles
with respect to Ra in the plume-abundant region as well.
Again, we average the solid symbols in Fig. 5(b) for the

FIG. 3. Probability density function of the normalized temper-
ature fluctuations for all Ra values. Upper panel: in the shear-
dominated region A. Lower panel: in the plume-abundant region
B. Left panel: data taken at z=λth ≈ 2. Right panel: at z=λth ≈ 20.

FIG. 4. Measured rms temperature profiles in the shear-
dominated region A: (a) Log-log plot of rms temperature
σT versus vertical position, z. The solid symbols are data points
used in the fitting. From top to bottom, the corresponding Ra are
as follows: 1.94 × 108, 1.64 × 108, 1.29 × 108, 1.06 × 108,
8.25 × 107, 5.08 × 107, and 3.25 × 107. (b) Log-log plot of
normalized rms temperature σT=θ� versus normalized vertical
position, z=H. (c) Log-log plot of the normalized rms temperature
averaged over Ra, hσT=θ�iRa, versus z=H. (d) The same data as in
(c) but in a semilog scale.
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respective vertical positions and plot the resultant hσT=θ�iRa
versus z=H in Fig. 5(c) in a semilog scale, with the error
bars obtained in the same way as before. The solid line in
the figure represents hσT=θ�iRa ¼ −0.92 lnðz=HÞ þ 0.59
[for reference the same fitting is shown in Figs. 5(b) and
5(d) as the dashed line]. The maximum fitting error is less
than3%.For comparison,weplot the samedata in the log-log
scale in Fig. 5(d), which shows unambiguously that the rms
temperature profile in the plume-abundant region cannot be
described by a power law relationship. Also note that, for
both the plume- and shear-dominated regions, the Deardorff
convective temperature scale, while nicely collapsing data
in the mixing zone and the bulk, cannot collapse data inside
the thermal BL [see Figs. 4(b) and 5(b)], as expected.
As the power-law and log profiles are derived with

different assumptions and imply different force balances,
we evaluate the related quantities. The basic assumption
made for the λ-I model is that the typical velocity scale
in the BL (Vb ¼ βgΔTλ2th=ν) matches that in the con-
vective core [V� ¼ ðQ0βgHÞ1=3]. Substituting the respec-
tive quantities and using our measured Nu-Ra relation
[Nu ¼ Q0H=ðκΔTÞ ¼ 0.16Ra0.28], we obtain Vb ¼ 2.51 ×
10−5Ra0.44 ðm=sÞ and V� ¼ 2.28 × 10−6Ra0.43 ðm=sÞ, with
Vb being roughly ten times larger than V�. For the λ-II
model, the key assumption is that the temperature scale
in the BL (θb ¼ κν=βgλ3th) is the same as that in the
core region (θ�). Evaluating these quantities using our
measured data, we find θb ¼ 4.21 × 10−9Ra0.84 (K) and
θ� ¼ 2.32 × 10−8Ra0.85 (K), with the magnitude of θ�

about 5 times larger than θb. Given that these are order-
of-magnitude scaling arguments, we see that the key
assumptions for both the λ-I and λ-II models hold approx-
imately, at least scaling wise.
The above results show very convincingly that both

logarithmic and power-law rms temperature profiles can be
present in turbulent convection at the same time but in
different regions of the bulk, depending on the local flow
conditions. This shows that there is no single force balance
mechanism at work in this complicated system, rather, the
balance is local. Thus, assuming either a log or a power-law
profile existing in the system is a too simplistic approach.
We note that the design of our apparatus greatly reduces
the influences from the sidewall and the stochastic motions
of the LSC. This specific apparatus coupled with the high
measurement precision enabled us to unambiguously dis-
tinguish and disentangle the logarithmic and power-law
profiles, which has remained an unsettled issue until now.
It should be noted that logarithmic profile for the mean
temperature has been observed in regions where plumes are
emitted [28]. As the mean temperature log profile has been
associated with the boundary layer being turbulent [29–31],
the authors of the above work have argued that the plume-
emitting region of the BL may be turbulent. In our case, the
Ra values are too low for the BL to be turbulent. So the
logarithm observed in the two cases may be for different
reasons. But it is clear that they are all related to the local
plume dynamics.
In summary, our experiment has convincingly show that

two distinct rms temperature profiles can coexist in a
Rayleigh-Bénard convection cell. In the shear-dominated
region, the profile is well-fitted by a power law, while a
clearly logarithmic profile is found in the plume-dominated
region. In both cases, we find the profiles to be invariant
with respect to Ra once they are scaled by the Deardorff
convective temperature scale and the distance by the
depth of the convecting fluid. This is the first time that
both logarithmic and the power-law rms temperature
profiles have been unambiguously measured in different
regions inside a single turbulent thermal convection cell.
Our results also show that the convective temperature first
proposed by Deardorff almost 50 years ago for the ABL
is the characteristic temperature scale in the mixing zone
and the bulk for both plume- and shear-dominated regions,
but not inside the thermal BL. As regions of shearing-wind
and rising-thermals both exist in an ABL [32], the present
results may have potential implications for atmospheric
research. The fact that different types of force balance can
coexist in the same system shows that assuming a single
physical mechanism applicable to the whole cell in a
complex system such as the Rayleigh-Bénard convection
may be an over-simplified approach. Rather, different
regions can have their own dynamics, even if the locations
are all in the convective layer (or bulk), the local dynamics
can be very different.

FIG. 5. Measured rms temperature profiles in plume-dominated
region: (a) Semilog plot of rms temperature σT , versus vertical
position, z. The solid symbols are data points used in the fitting.
The legends for different Ra are the same as in Fig. 4. (b) Semilog
plot of normalized rms temperature σT=θ� versus normalized
vertical position, z=H. (c) Semilog plot of the normalized rms
temperature averaged over Ra, hσT=θ�iRa, versus z=H. (d) The
same data as in (c) but in log-log plot.
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