
 

Inwardly Rotating Spirals in a Nonoscillatory Medium

Harunori N. Yoshikawa* and Christian Mathis
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We report the spontaneous formation of spiral patterns observed at a downward-facing free surface of a
horizontal liquid film. The surface is unstable to the Rayleigh-Taylor instability and the resulting liquid
discharge from the film can occur in the form of propagating liquid curtains. They are born at the film
circular periphery and exhibit patterns of inwardly rotating spiral arms. With the help of a phenomeno-
logically constructed cellular automaton, we show that the patterns arise from the phase locking leading to
periodic liquid discharge at constant flow rate over the whole film surface.
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The formation of patterns in nonequilibrium systems has
attracted much interest in a variety of scientific fields, as
understanding self-organization processes provides rich
insights into their complex behavior [1]. Spiral patterns
emerging through chiral symmetry breaking are of particular
interest. The formation has been investigated intensively
for waves in excitable media, e.g., in Belousov-Zhabotinsky
chemical reaction systems [2]. The behavior of these
reaction-diffusion systems is modeled either by coupled
differential equations or by cellular automata for excitation
and recovery processes [3,4]. Spiral patterns in forced
dissipative systems have also been studied. Bodenschatz
et al. [5] observed patterns of stable spirals and of chaotic
spiral defects in a Rayleigh-Bénard convection of a non-
Boussinesq fluid. Numerical simulations of the generalized
Swift-Hohenbergmodel reproduce the observed patterns [6].
A theoretical analysis [7] by a phase diffusion equation,
which is applicable to a wide variety of nonequilibrium
systems [1], shows that the frustration of the local wave
number vector drives the motion of convection rolls to
produce spiral patterns. The patterns observed in these
systems consist of single or multiple curved arms rotating
around a core. The rotation occurs with their arms trailing
the direction of rotation so that the advancing front of each
arm moves outward from the core. Nevertheless, the phase
diffusion equation allows spirals propagating both inward
and outward [7]. Vanag and Epstein, indeed, discovered
inwardly rotating spiral arms in the Belousov-Zhabotinsky
reaction in a water-in-oil microemulsion [8]. The observed
pattern is called antispiral. The formation of antispirals is
reproduced by numerical simulations in excitable and oscil-
latory media [9].
In the present Letter, we report our observation of

antispirals at the downward-facing free surface of a liquid
film, to which liquid is supplied continuously. The destabi-
lization of the film by the Rayleigh-Taylor (RT) instability

leads to liquid discharge from the film in different modes,
drops, columns, and curtains, depending on the rate of
liquid supply. The RT instability of a film under continuous
liquid supply and the dynamics of resulting patterns have
been investigated, in particular, for the column mode of
discharge [10–15]. We explore the discharge in curtain
mode, where spiral patterns are observed, with varying the
film lateral extension, the liquid viscosity, and the rate of
liquid supply.
The experimental setup is the same as in previous work

[13]. A liquid film forms under a grid plate. A given amount
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FIG. 1. Experimental setup. (a) Schematic illustration of the
whole setup. Holes of the grid plate have a diameter a ¼ 1 mm
and distributed on a hexagonal lattice with an interhole distance
d ¼ 2 mm. Uniform liquid supply is assured by a static liquid
layer maintained in a depressurized reservoir above the plate. An
annular light-emitting diode (LED) lighting system allows us to
detect sharp deflections of the free surface by optical observation
in top view. (b) A snapshot of a pattern of two spiral curtains in
top view. (c) A snapshot of a pattern of single spiral curtain in side
view (see Movie 1 in Supplemental Material [16]).
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of liquidU, per unit time and per unit area, is supplied to the
film uniformly through holes of the plate (Fig. 1). The lateral
extension of the film is varied by masking a peripheral zone
of the platewith different annular disks of different inner radii
R (40 ≤ R ≤ 65 mm). Three silicone oils of different kin-
ematic viscosities νð¼ 105; 197; 325 mm2=sÞ are adopted
as test liquid. The density and surface tension of these oils are
ρ ¼ 980 kg=m3 and γ ¼ 21 mN=m, respectively. The cor-
responding capillary length is l ¼ ðγ=ρgÞ1=2 ¼ 1.48 mm,
where g is the gravitational acceleration.
Different modes of discharge are observed with increas-

ing the rate of liquid supply U or the Froude number Fr ¼
U=

ffiffiffiffi
gl

p
[13]. Rotating patterns form spontaneously when

0.03≲ Fr ≲ 0.07. At the smallest limit of this Fr range,
the discharge can occur in the form of columns revolving
around the center [Fig. 2(a)]. The pattern is not in solid
body rotation, as the angular velocity of revolution is
smaller for inner columns [Fig. 2(b)]. A slight increase of
Fr leads to liquid discharge in curtain mode where spiral
patterns in solid body rotation can be observed. A typical
formation of spiral curtains starts from the film periphery,
where axisymmetric curtains fall periodically. The curtains
propagate inward, exhibiting a target pattern [Fig. 2(c),
t ¼ 0, 2.8 s]. The target pattern is not stable: axisymmetric
curtains shrink to the center and collapse to form a “core,”
below which agglomerated conical bubbles are often
observed. Curtains then start winding up around the core
[Fig. 2(c), t ¼ 8.2–9.5 s] and the core shifts to the center
of the film. Finally, spiral curtains in steady rotation are
established [Figs. 1(b) and 1(c)]. Once formed, the pattern
is robust and persists for a long time unless strong
perturbations are introduced. To accelerate the formation
of spiral curtains, one can mask the central zone of the grid
plate, e.g., by placing a cylindrical rod on the plate, as
we did with one of a radius R0 ¼ 11 mm for most of the
measurements. This artificial defect promotes a quick
formation of a spiral core at the center.

The system in the spiral regime exhibits multistability.
Patterns of different numbers m of spiral arms, ranging
from 1 to 6, are observed at the same set of values of the
control parameters ðν; R; UÞ [Fig. 3(a)]. In the experiment,
no external perturbation was introduced to promote par-
ticular patterns: the selection of patterns seems to result
from an uncontrollable initial condition. The sense of
pattern rotation is also decided randomly: clockwise and
counterclockwise rotations are observed with the same
probability. The curtains propagate, however, always from
the film periphery to the center, leading to the formation of
antispirals [Figs. 3(b)–3(e)]. The inward propagation could
be explained by the inward capillary force exerted by the
curtains on their roots, as the Laplace pressure inclines
curtains from the vertical to their concave side [Fig. 1(c)]
[17]. The angular speed Ω of the solid body rotation of a
pattern is inversely proportional to the number of arms for a
given liquid and for a given flow condition [Fig. 4(a)],
implying that the frequency ω ¼ mΩ of liquid discharge is
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FIG. 2. Some rotating patterns. (a) A snapshot in top view of
liquid columns revolving around the center (R ¼ 45 mm,
U ¼ 3.8 mm=s). (b) A space-time diagram constructed from
line images along the y axis shown in (a). (c) Formation process
of a single armed spiral pattern (R ¼ 40 mm, U ¼ 4.6 mm=s).
The liquid viscosity is 321 mm2=s for all the results. See Movies
2 and 3 in Supplemental Material [16].
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FIG. 3. Spiral patterns formed with a central mask. (a) The
number of observed spiral arms m. (b)–(e) Different patterns of
different m. The liquid kinematic viscosity ν, the film radius R,
and the rate of liquid supply U are (b),(c) 321 mm2=s, 65 mm,
4.65 mm=s and (d),(e) 197 mm2=s, 55 mm, 7.12 mm=s. See
Movie 4 in Supplemental Material [16].
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FIG. 4. Temporal characteristics of spiral patterns. (a) The
frequency Ω of the solid body rotation of patterns. (b) The
frequency of liquid discharge ω ¼ mΩ nondimensionalized by
the viscous time τν ¼ ðν=g2Þ1=3.
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constant. The frequency ω is found to be scaled by the
reciprocal of the viscous time τν ¼ ðν=g2Þ1=3 [Fig. 4(a)],
which characterizes the RT instability in a thick liquid layer
[18]. The film radius R and the rate of liquid supplyU have
no significant effect on ω [Fig. 4(b)].
The most directly accessible spatial characteristic of a

spiral pattern is the length of each arm, L. For a given set of
values ðR;UÞ, this length is inversely proportional to the
number of arms [Fig. 5(a)], implying that the total arm
lengthmL of a pattern is constant. No influence of the fluid
viscosity on L is detected. The total length mL is sensitive
to the lateral extension of the film and proportional to the
effective area of the film surface,S ¼ πðR2 − R2

0Þ [Fig. 5(a)].
It follows that the averaged wavelength, defined by
λ̄ ¼ S=mL, is constant at a given rate of liquid supply U.
The wavelength λ̄ decreases with U [Fig. 5(b)].
To reveal the mechanism of formation of spiral curtains

one might invoke a phase diffusion equation with deriving
characteristic functions involved from the first principles of
fluid mechanics, as done for the spiral rolls in the Rayleigh-
Bénard convection [7,21]. The application of the same
method to the present problem is, nevertheless, challenging
due to the unknown shape of free surfaces. In the studies of
pattern formation in excitable media, theoretical modeling
by cellular automata has allowed us to understand essential
features of spiral patterns observed in experiments [4].
Insights into the formation of the spiral liquid curtains can
also be obtained by constructing a cellular automaton (CA).
In the present system, liquid discharged at a given location
of the film is supplied either by the vertical flow through the
grid plate or by the horizontal flow inside the film (Fig. 6).
The flow rate of discharge J0 per unit width of curtain is
expressed as J0 ¼ ðV þ cÞbþ Uδ, where V is the hori-
zontal liquid velocity toward the curtain averaged over
the film thickness and c is the normal velocity of a liquid
curtain. A length b represents the thickness of a film
sublayer that is removed by the passage of a curtain,
b ¼ UΔT, where ΔT ¼ 2πω−1 − δc−1 is the time interval
between two successive passages of curtains. In the spiral

curtain regime, the horizontal liquid transport is negligible
[22]. Thus, we have

J0 ≈ cbþ Uδ ¼ 2πUc=ω: ð1Þ
The negligible liquid transport inside the film may allow a
simple CA. Regarding the film being constituted of cells
uniformly distributed on the Cartesian grid, we model the
dynamics of cells with the following rules. (1) Each cell is
characterized by a thickness h representing the amount of
liquid stored in the cell. It increases by a constant amountU
per time step. (2) The cell discharges the stored liquid when
h exceeds a critical value hc, which is determined by the
timescale of the RT instability, hc ∼Uτν. (3) A discharging
cell lowers the value of hc locally to induce discharge of
neighboring cells. This rule represents the capillary inter-
action between cells, which is necessary for the formation
of liquid curtains. (4) The thickness of a discharging cell
returns to zero at the next time step. Rotating spiral arms
are indeed steady solutions of this CA, as shown in Fig. 7.
Although these arms are initiated by a time-dependent
forcing at the circular boundary, the spiral arms survive
even after the forcing is turned off. The arms autoadjust
their rotation speed and shape such that the phase of
liquid discharge is locked for the arms to sweep every cell
at a constant period dictated by the timescale of the RT
instability.
An implicit hypothesis underlying the above CA model

is a constant propagation speed of spiral arms, as the
discharge advances by the linear dimension of a single cell
per each time step. One can deduce the shape of a rotating
arm, r ¼ Fðφ −ΩtÞ, directly from the hypothesis, where
ðr;φÞ are the cylindrical polar coordinates and the function

(a) (b)

FIG. 5. Geometrical characteristics of spiral patterns. (a) The
length L of each spiral arm. (b) The averaged wavelength λ̄ ¼
S=mL normalized by the wavelength of the fastest growing mode
of the RT instability λRTð¼ 2π

ffiffiffi
2

p
lÞ.

FIG. 6. Schematic drawing of a curtain cross section.

FIG. 7. Spiral arms generated by a CA model (see Appendix in
Supplemental Material for details [16]). The arms are in steady
counterclockwise rotation. The color scale indicates the local film
thickness h in the unit of U. The critical thickness of discharge is
set at hc ¼ 9. It is observed that the rotation speed of pattern Ω
is inversely proportional to the number of spiral arms m, and that
the period of discharge 1=mΩ is identical to hc.
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F dictates the arm shape. Since the normal velocity c of an
arm is given by a geometrical relationship [23],

c ¼ ΩF∂φFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ ð∂φFÞ2

q ; ð2Þ

the arm shape F is obtained by solving this differential
equation. The solution is, in a parametric representation,

r ¼ r0 sec α; φ −Ωt ¼ tan α − αþ φ0;�
0 < α <

π

2

�
: ð3Þ

This solution involves only a single length scale r0 ¼ c=Ω,
which decides completely the shape of the arm.
The curve given by Eq. (3) is a spiral (Fig. 8). It recovers

the Archimedean spiral far from the center, r ≫ r0. One
can show that the length scale r0 is related with the
wavelength λ̄:

2πr0 ¼ mλ̄: ð4Þ
Since λ̄ is constant at a given flow condition in the
experiment, Eq. (4) implies that the shapes of arms in
two patterns with different numbers of arms, say, m1 and
m2, would be similar to each other with a scale factor
m1=m2. Comparison with experiments shown in Fig. 8
supports the predicted shape [Eq. (3)] and the similarity
law. For spiral arms given by Eq. (3), one can also show
that any straight-line tangent to the circle r ¼ r0 is
perpendicular to arms at any time instant t. The front of
a spiral arm will thus advance at a constant speed c along
the line. This behavior is confirmed for patterns of small
arm numbers, m ¼ 1 and 2 (Fig. 9). For larger m, the
constant speed is limited within a small range of r due to
geometrical confinement.

We have described a new example of rotating spiral
patterns formed spontaneously in a fluid system. A
simple CA model suggested that the motion of curtains
synchronized with the RT instability would produce
observed spiral patterns. The patterns have some distinc-
tive features from spiral waves in reaction-diffusion
systems. The latter waves give rise to outwardly rotating
spirals in general, while the rotation direction may change
if the system is close to the onset of Hopf bifurcation [24].
The phase velocity of the waves depends on the local
curvature κ of a wave front and is dictated by the eikonal
equation c ¼ c∞ þDκ, where c∞ is the velocity of plane
waves and D is the diffusion coefficient [25]. The spiral
patterns considered in the present work, in contrast, rotate
inwardly. Experimental observations suggest that the
selection of rotation direction would be related to boun-
dary effects rather than the distance from a bifurcation
point. The phase velocity of spiral arms is independent
of their local curvature, as suggested by Eq. (1) and
supported by experimental results (Fig. 9). To some extent
these differences may be explained from the nonoscillatory
nature of the present medium and from the boundary effects
generating liquid curtains. Theoretical investigations
by model equations, e.g., the complex Ginzburg-Landau
equation, which take into account these characteristics of
the system,would be of interest to get further insight into the
observed antispiral formation.
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FIG. 8. The shapes of spiral arms. (a) In single armed patterns
observed in different liquids of different viscosities ν (R ¼ 45 mm,
U ¼ 6.69 mm=s). (b) In different patterns of different armnumbers
m (ν ¼ 321 mm2=s R ¼ 65 mm, U ¼ 4.65 mm=s). The length
scale r0 has been computed frommeasured wavelength λ̄ [Eq. (4)].
The theoretical spiral shape [Eq. (3)] is shown in solid line for
comparison.
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FIG. 9. The phase velocity c of a spiral arm. (a) A straight line
perpendicular to a spiral arm. (b) A space-time diagram showing
the invariance of the phase velocity c. (c) Comparison of the
wavelength λ̄ measured from the spiral length L and the wave-
length 2πc=ω estimated from c. Results are shown only for single
armed spirals (m ¼ 1).
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