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Stretching and shooting rubber bands is a familiar experience for both children and adults, yet the initial
dynamics are so quick that they are generally missed. When a cut elastic strip is stretched from its end and
suddenly released, the dynamics depend on a balance of stretching and inertia. However, when a rubber
band is stretched, a region of high curvature is created and it is unclear how this curvature affects the
dynamics. Here, we demonstrate that during the retraction of a circular rubber band, a wavelength develops
at the rear which increases in size as time progresses. Through a combination of experiments and modeling,
we investigate the speed at which the back of the elastic retracts and observe a self-similar shape that
depends on stretching, inertia, and bending. These retraction dynamics illuminate how a rubber band can

pass by a thumb when discharged without hitting it.
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Stretching and shooting a rubber band is a familiar
experience, enjoyed by children and adults alike. Yet, the
process occurs so fast that the deformation goes unnoticed.
Pinching and releasing a rubber band is closely related to
the motion of a plucked string, a problem that has a rich
history dating back to debates between Euler and
D’Alembert [1]. Indeed, these types of retraction processes
are ubiquitous and can be found across a variety of length
scales, including on the strings of certain musical instru-
ments [2], the release of an archer’s bow [3], a 100-m
slingshot ride at an amusement park, and the molecular
slingshot motion of proposed drug-delivery nanomachines
[4]. Although models of stretched elastic recoil are typi-
cally limited to the coupling of inertia and stretching [5-9],
bending moments are known to be important in regions of
high curvature [10-12]. In this Letter, we show that the
shape of the retracting wedge depends on how much it is
stretched, its wedge angle, and a time-varying dimension-
less group that arises naturally from a balance of stretching
and bending. For the shooting of a typical rubber band, we
find that bending is important over the entire retraction
period, manifested in a distinct self-similar dynamics that
captures elements of stretching, bending, and inertia.

The motion of a circular rubber band as it is stretched and
released is illustrated in Fig. 1. As the rubber band is
stretched with strain e, it straightens and forms a wedge
with a half-angle ¢ and side length (e + 1)¢. Upon release
at time ¢ = 0, the rubber band recoils with a speed V and
develops a clear rounded region in the rear with a growing
wavelength 4. Yet, the front of the elastic begins to move
well before the rear reaches it, allowing the thumb to tuck
out of the path of the rear of the elastic in time for it to pass
[see the Supplemental Video [13] ]. It is interesting to note
that as the front begins to move, it dynamically buckles in a
manner similar to that observed in straight beams and rods
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[14,15], although in this case it is not impacting a rigid
object, and thus shares similarities with the front motion of a
falling slinky [16]. These observations indicate the presence
and importance of a longitudinal stress wave, which has
been noted in the recoil of flat rubber strips [15,17].

To visualize and quantify this process more precisely, we
carry out experiments in which the rubber band is looped
around a cylinder and marked to track the motion of
material points [Fig. 2(a)]. The motion of the marks allows
us to identify the presence and location of the longitudinal
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FIG. 1. High-speed images of a rubber band being pinched,
stretched, and released, resulting in it being fired at approxi-
mately V = 12.5 m/s. Here the elastic is pulled back to form a
wedge with a half-angle ¢ and length (1 + €)Z,,, where € is the
strain. A key feature in the shape of the retracting elastic is a
rounded region with a growing wavelength A(z).
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FIG. 2. (a) Marking material points on the elastic reveals a

longitudinal shock traveling at speed ¢ = 43 m/s, highlighted
with a vertical dotted line. The material points behind the shock
follow with an approximate velocity V and as a consequence
move to different points of the curved region over time (red
circles). Here ¢ =4° and ¢ = 0.49. (b) The shape of this
retracting elastic can be extracted and plotted in spatial coor-
dinates (x,y) at various times f. (c) Rescaling the spatial
coordinates by the dynamic length scale ct illustrates that only
the position of the end of the elastic is adequately captured in this
self-similar framework, providing a value for the ratio V/c.
(d) The dynamics of an elastic ribbon can be modeled in terms of
the local angle 8, moment m, and projected internal forces n, and
n, at each position s.

wave from which its speed ¢ can be calculated. Here, ¢ =
43 m/s is higher than the celerity /E/p ~ 33 m/s, where
Young’s modulus £ and density p are directly computed for
this elastic [see the Supplemental Material [13]]. This
difference is likely due to the effect of strain rate [18], also
observed in the retraction of flat elastic strips [15]. As the
longitudinal wave travels toward the cylinder, material
points trail behind it with a speed V directed along the x
axis, which can be analyzed using the stretch ahead and
behind the wave [19,20]. Indeed, the elastic is expected to
be essentially relaxed after the wave passes, allowing us to
estimate 7 from the arclength of the elastic when the
longitudinal wave reaches the cylinder. The plucked string
analysis also predicts that a transverse wave at the rear of
the wedge would create a growing trapezoidal shape
[19,20]. Yet, the shapes that we observe are curved and
appear geometrically similar to one another as they evolve.
Furthermore, the markings reveal that material points travel
to different points around these curves as time progresses
[red circles in Fig. 2(a)], suggesting a benefit in adopting an
Eulerian, or spatial, description of the dynamics.

We set a fixed origin at the point of release, with the x
axis oriented in the direction of motion. The spatial
coordinates are extracted from the high-speed photographs
using custom image processing and plotted at progressive
times [Fig. 2(b)]. The lack of a geometric length scale
associated with a wedge often leads to nongeometric

properties combining to form a characteristic length scale
that is a hallmark to self-similar dynamics. For example,
self-similarities are manifested in retracting liquid wedges,
which are driven by surface tension rather than elastic
tension [21]. In our elastic wedge retraction, a natural time-
varying length scale to consider is the distance ct the wave
travels. Yet, when the shapes of the rubber band are plotted
in these self-similar coordinates, they do not immediately
collapse [Fig. 2(c)]. Nevertheless, the rear point of the
elastic collapses to a particular value of x/ct, which is
equivalent to the ratio V/¢ and can be used to estimate the
speed of the rubber band.

To analyze the retraction speed, we model the region
behind the longitudinal wave as an inextensible beam with
width b and thickness 4. This approximation for an initially
loose elastic is supported by a more rigorous analysis that
takes into account the amount of stretch [19]. The beam is
parametrized by the unit arc length s as dx/0ds = cos (s, 1)
and Jy/0s = sinf(s,t), where 6(s,t) denotes the angle
between the tangent and the x axis. Assuming the absence of
any external forces, such as gravity or air resistance, the
balance of linear and angular momentum lead to the standard
Kirchhoff equations, complemented by the constitutive laws
for the tension within the beam and moment [22]
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Here, n, and n, are the projected internal forces, m is the
resultant bending moment, and I = bh?/12 is the moment
of inertia [Fig. 2(d)].

We first consider the case when the bending terms are
negligible compared to the stretching terms (Om/ds <
n,cos® —n,sin@). The expressions in Eq. (1) can be
combined to obtain the wave equations c?>0°x/0s> =
0*x/0r* and c?0%y/0s* = 9?y/0r*. This form of the wave
equation can also be obtained from a least action principle
[23]. We seek self-similar solutions of the form x/ct =
X(n) and y/ct = Y(n). Here, n = s/ct is the self-similar
variable and X (1) and Y (1) are the self-similar functions for
the x and y components, respectively. These relations, in
combination with the nonlinear wave equation, yield the
following self-similar equations

(1=m)X"(n) =0,  (1=n)Y"(n) =0, (2)
where the prime denotes a differentiation with respect to #.
Equation (2) yields the solutions, 7 =1, X" =0, and
Y” = 0. Because we are interested in the region behind
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FIG. 3. (a) Experimental shapes from Fig. 2 rescaled on self-similar coordinates (x/ct, y/ct) reveal that the rescaled wavelength 1/ct

decreases with time and thus likely depend on a combination of the thickness &, density p, and Young’s modulus E. When the thickness
h is negligible, the shape can be approximated as a trapezoid with dimensions &, and &,. (b) The retraction speed model (line) is
consistent with measurements collected at various stretches and angles for different-sized rubber bands (symbols). (c) The measured

wavelength A for these elastics grows as 7'/2

Fig. 2 decreases with time as ¢~!/2

the wave n < 1, we neglect the solution 7 = 1, as it reflects
the position of the wave s = ct. The boundary conditions
arise from the values of the tangent, which in self-similar
form are X’'(0) = 0, X'(1) = cos ¢ for X(n) and Y'(0) = 1,
Y'(1) = sin¢ for Y(5). These boundary conditions cannot
be satisfied with a continuous curve, but can be satisfied
with a trapezoidal shape.

To compute the position and size of the trapezoid, we
combine geometric and kinematic arguments. When the
wave reaches the cylinder, it has traveled a distance
ct = (e + 1)¢ycosp. At that instant, half the trapezoid’s
self-similar length shouldbe &, + &,/2 = 1/[(e + 1) cos ¢,
where &, and &, are the trapezoid’s side length and base
length, respectively. Combining this relationship with the
geometric condition tan ¢ — & sin¢p = &,/2, we calculate
the lengths of the trapezoid as

1= (e+1)sing
~ cosp(e+ 1)(1 —sing)’

B € tan ¢
Z _2<€—|— 1) <1 —sinqb)'

The horizontal position of the base can be computed as
V/c = ¢&,/(2tan ) so that

Ss

(3a)

(3b)
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It is reassuring to note that in the extreme case ¢ — 0, the
retraction speed in Eq. (4) reduces to V/c =¢/(e+ 1),
previously observed for cut, straight rubber strips [15].
Plotting the trapezoidal solution against the experimental
shapes from Fig. 2, we find a consistency between theory
and experiments [Fig. 3(a)]. The trapezoidal shape deviates
from the experimental data only near the curved region,

and is independent of stain € and angle ¢. Inset: the rescaled wavelength for the elastic in
and is larger than &, during the entire retraction period.

suggesting the importance of the neglected bending terms.
By neglecting the bending terms in Eq. (1), we are
assuming the thickness of the wedge to be negligible.
Yet, as an intrinsic length scale in this system, the thickness
is only negligible if it is small relative to the dominant length
scale, here ct. This ratio of length scales can also be
interpreted as a ratio of bending and stretching effects

and gives rise to the dimensionless parameter \/ Et>/ph?.
Therefore, assuming the thickness to be negligible 7 — 0 is
equivalent to considering the shape at an arbitrarily long

time 1 — co0. As \/Et>/ph?* increases, the rescaled wave-
length A/ct becomes progressively smaller, eventually
converging to the trapezoidal solution [Fig. 3(a)].

Conversely, as \/Et*>/ph?® decreases, the importance of
thickness & becomes progressively larger, motivating us to
consider the case when the stretching terms are negligible
compared to the bending terms. Following the analysis of
Audoly and Neukirch under the assumption of small
displacements [10], the Kirchhoff equations (1) can be
simplified to

040 %0
El— + pbh—
Os? tp

o7 0

(5)

which indicates the balance of solely bending and inertia. A
natural length scale for this equation is [(EIf?)/(pbh)]'/4,
and we therefore seek self-similar solutions using the
variable 7 = s/(Eh*t?/12p)"/4. Tt is convenient to solve
for the complementary angle u(#7) = /2 — (s, t), which
when substituted into Eq. (5) reduces to

4u™ (i) + " (7) + 30 (77) = 0. (6)
This differential equation is identical to that obtained by
Audoly and Neukirch when modeling fragmentation due to
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focused bending [10], with the key difference being that our
equation is in terms of the angle rather than the curvature.

Solving Eq. (6) requires four boundary conditions.
Symmetry provides boundary conditions #(0) =0 and
u"(0) = 0, whereas the far-field angle prescribes a third
u(o0) = (m/2—¢). The last boundary condition, u™(0) = 0,
is a consequence of the dynamic beam equation:
EId*y/0s* + pbhd?y/O0t* = 0. Specifically, because
v(0,7) = 0, the origin does not accelerate leading to
d*y/0s*(0,1) = 0, or equivalently " (0) = 0. These boun-
dary conditions lead to the self-similar solution, u(7}) =
(n —2¢)C(ii/\/2x), where C(i7) = [{] cos[(r/2)n?]dn,is the
Fresnel cosine integral. This solution has a finite curvature at
the origin, as contrasted with Ref. [10]. The equation for u
suggests that the wavelength A should occur when 7j = 2/x.
Under the assumption of small displacement, s = x — V1, the
wavelength can be defined as 1 = 2/z(Eh**/12p)"/*.
Note that 4 is independent of both strain e¢ and far-field
angle ¢.

To test these predictions for V/c and A, we carry out
systematic experiments with a variety of rubber bands of
different sizes. These rubber bands span circumferences
between 5.4 and 91.4 cm, while having similar densities,
Young’s moduli, and thicknesses [see the Supplemental
Material [13]]. Experimental values of the velocity ratio
V/c are plotted in Fig. 3(b) for different-sized rubber
bands (symbols, see inset) by varying the strain (color) and
wedge angle (orientation) and reasonably agree with the
theoretical relationship (solid line) of Eq. (4). Similarly, by
plotting the normalized wavelength 1/h against the dimen-

sionless group / Et*>/ph? on logarithmic scales, it becomes
apparent that the wavelength grows as 1 ~ /¢ [Fig. 3(c)].
This behavior is found in many problems associated
with flexural waves in rods and beams [10,24,25], indicat-
ing that the growing curved region is in fact a bending
wave. Indeed, the best-fit prefactor of 1.8 shown in
Fig. 3(c) is close to 2v/7/(12)"/* ~ 1.9 from our analysis.
Furthermore, the data in Fig. 3(c) indicated that the
wavelength is independent of the wedge angle and initial
strain, also predicted in our analysis. Therefore, even
though the appropriateness of the small-angle approxima-
tion is questionable, it provides a reasonable estimate for
the wavelength and its dependencies.

To predict when bending effects will influence the shape
of the retracting elastic wedge, it is instructive to return to
Fig. 3(a). Note that the influence of the wavelength A on the
overall shape of the retracting rubber band diminishes with
time as A/ct — 0. This effect is quantified in the inset of
Fig. 3(c), which illustrates two important points: the rate of
this decrease scales as r~'/2 and the values throughout the
entire retraction period are greater than &,. Had the
retraction continued, it is expected that the values of
A/ct would eventually be smaller than &,, at which point
the trapezoidal shape would dominate. Indeed, the value of

90 T

Stretching-Inertial

0 S~ 1047 _-= o= _'0:: — — — Bending-Inertial

0 0.2 0.4 0.6 0.8 1

FIG. 4. Theoretical phase diagram illustrating the conditions
predicted for a bending-dominated retraction regime (shaded
region). The boundary depends on the strain ¢, wedge half-angle
¢, and the dimensionless number +/Ef*/ph?. Top-left inset: in
the stretching-dominated regime, the shapes collapse using the
self-similar scalings x/+/(E/p)t and y/+/(E/p)t. Bottom-right
inset: in the bending-dominated regime, the shapes collapse using
the self-similar scalings [(x — V¢)/(ER**/12p)"/4]  and
v/ (ER*2/12p)"/4].

£, can be interpreted as the velocity that a transverse elastic
wave travels along the y axis. Thus, we can estimate
whether the retraction will be dominated by stretching or
bending by computing the ratio of the trapezoid base to the
rescaled wavelength. This analysis predicts that the shape
will be bending dominated provided that the elastic is
stretched less than

_ 1 —sing (7)
€ > '
(B Fan g +-sing 1

Equation (7) can be used to develop a phase diagram to
predict when a bending-dominated regime will occur based
on the initial strain and the wedge half-angle (Fig. 4). In
particular, the boundary separating the two regimes
depends on the time-dependent dimensionless parameter

\ Et?/ph*. At early times, the bending-dominated regime
is prominent for moderate wedge half-angles. As time
increases, the boundary moves in favor of the stretching-
dominated regime, reducing the extent of the bending
regime to small strains and wedge half-angles.
Considering the entire retraction period, we choose to

set a characteristic boundary at \/Ef*>/ph?* = 100 using an
order-of-magnitude approximation for the parameters of a
stereotypical shot rubber band [26], such as the one shown
in Fig. 1. An elastic stretched at moderate wedge angles
will initially retract in the bending regime. However, its
retraction period is sufficiently long to transition to the
stretching regime [see the Supplemental Material [13] ]. By
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contrast, an elastic stretched at small angles does not retract
for a sufficiently long time and remains in the bending-
dominated regime throughout its retraction. In this regime,
the shapes can be collapsed into self-similar coordinates
using the scaling associated with bending (Eh?t>/12p)!/4,
where V't is subtracted from the x coordinate. Indeed, all of
the curves in Fig. 2 collapse onto a single curve with this
scaling (top right inset in Fig. 4). Conversely, the retracting
shapes within the stretching regime can be collapsed to a

self-similar trapezoid using the scaling /E/pt (see top left
inset in Fig. 4).

Taken together, our analysis and experimental data extend
previous studies of elastic retraction to consider a stretched
elastic wedge with finite thickness. We find that for the small
wedge angles typical when shooting rubber bands, the
retraction can be described by a distinct self-similar curve
with a dynamic length scale arising from a balance of inertia
and bending. Within this bending regime, the strain and
wedge angle do not significantly influence the shape but do
affect the retracting velocity. We find that this velocity can be
adequately estimated by the same kinematic and geometric
relationships in both regimes. The boundary between the
two regimes depends on three dimensionless groups,
the wedge half-angle ¢, the strain €, and the parameter

\/ Et?/ ph?. These dynamics can provide further insight into
retracting systems in which there is a high energetic cost to
curvature and could be extended for a viscous environment
[15] that would be expected for small-scale applications
such as molecular drug delivery.

From a curiosity-driven perspective, the results highlight
how—when a rubber band is fired off a thumb—the thumb
can avoid being hit by the elastic. Tension from the
stretched elastic is counteracted by a torque exerted by
the thumb; the tension suddenly vanishes when the longi-
tudinal wave reaches the thumb, causing the thumb to
inadvertently deflect. Because the longitudinal wave is
faster than the elastic, there can be enough time for the
thumb to adequately deflect, with this time depending on
the ratio V/c in the bending-dominated regime [27].

We thank P. Barbone, D. P. Holmes, C. F. Brasz, and M.
Pezzulla for helpful discussions.
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