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Performing accurate position measurements of a mechanical resonator by coupling it to some optically
driven quantum emitter is an important challenge for quantum sensing and metrology. We fully characterize
the quantum noise associated with this measurement process, by deriving master equations for the coupled
emitter and the resonator valid in the ultrastrong coupling regime.At short timescales, we show that this noise
sets a fundamental limit to the readout sensitivity and that the standard quantum limit can be recovered for
realistic experimental conditions. At long timescales, the scattering of the mechanical quadratures leads to
the decoupling of the emitter from the driving light, switching off the noise source. This method can be used
to describe the interaction of any quantum system strongly coupled to a finite size reservoir.
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Coupling optical and mechanical degrees of freedom
(d.o.f.) was first investigated in the pioneering field of cavity
optomechanics, involving an electromagnetic resonator
with amoving end-mirror coupled to amechanical oscillator
[1]. Optical drive of such systems has lead to efficient
cooling of the mechanics [2,3] down to the ground state
[4,5], opening the path tomanipulation of the quantum states
of a macroscopic oscillator [6,7]. With the recent develop-
ments of nanomechanics, a new class of systems has
emergedwhere the optomechanical coupling is notmediated
by a cavity, but by a single quantumemitter [8]. These hybrid
systems are now implemented in a wide range of platforms
coupling e.g., single spins [9], nitrogen-vacancy (NV)
centers in diamonds [10,11], or semiconductor quantum
dots [12,13] to vibrating nanowires, or else involving
superconducting qubits embedded in oscillatingmembranes
[14,15]. Interesting test beds to investigate the quantum-
classical boundary or information thermodynamics [16],
these devices are also especially appealing for quantum
sensing and metrology [17]. Indeed, tiny variations in the
position of the mechanics allow measuring ultralow forces,
as the one created by a single spin [9]. Reciprocally, it is
possible to extract information on the position of the
mechanics from the properties of the light radiated by an
embedded quantum emitter [18,19]. The intrinsic sensitivity
of these devices can be enhanced by reducing the size of
the resonator, or alternatively, by increasing the coupling
between the mechanics and the quantum emitter: recently
some experiments have reached the ultrastrong coupling
regime where the emitter-mechanical coupling is compa-
rable to the mechanical frequency [12,14].

These achievements have opened the way to the
experimental study of the “single-photon regime” of
optomechanics ruled by the nonlinearized optomechanical
interaction [20], and characterized by new noise sources
whose proper modeling is still to come. So far, indeed, most
theoretical investigations of hybrid optomechanical sys-
tems have focused on the weak coupling regime [21–25]
where the coupling to the quantum emitter is treated using
perturbative techniques. A better understanding of state-of-
the-art experimental devices now requires to model their
evolution in the ultrastrong coupling regime.
In this Letter, we model the dynamics of a mechanical

resonator interacting with an optically driven quantum
emitter in the ultrastrong coupling regime. We demonstrate
that it is possible to extract information on the mechanical
position through the light radiated by the quantum emitter.
This measurement process induces a backaction noise on
the mechanical state, associated to the emitter’s population
fluctuations. To fully characterize this quantum noise, we
go beyond the semiclassical approximation and derive
master equations ruling the evolution of the hybrid system.
At short timescales, the quantum noise translates into a
nonsymmetric scattering of the mechanical quadratures,
setting a fundamental limit to sensing precision. We show
that the standard quantum limit can be recovered for
realistic experimental conditions. At long timescales, this
scattering leads to the decoupling of the quantum emitter
from the driving light, switching off the noise source. In
this picture, the driven quantum emitter behaves both as a
measurement channel and as a source of dissipation for
the mechanics. Our general method allows describing an
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unusual situation of quantum optics involving an effective
finite size reservoir (the quantum emitter), whose dynamics
is sensitive to the evolution of the quantum system (the
mechanical resonator).
System.—The hybrid mechanical system under study is

depicted in Fig. 1(a): a two-level system (TLS) of frequency
ω0, of ground and excited states jgi and jei, respectively, is
parametrically coupled to a mechanical oscillator (MO)
of frequency Ωm ≪ ω0 and driven quasiresonantly by a
classical monochromatic light source of frequency
ωL ¼ ω0 − δ0, where δ0 stands for the drive-TLS detuning.
The Hamiltonian of the driven TLS in the rotating wave
approximation is HqðtÞ¼ℏω0ΠeþℏgðeiωLtσ−þe−iωLtσþÞ
withΠe ¼ jeihej the projector on the TLS excited state, g the
classical Rabi frequency, and σ� the rising or lowering TLS
operators. TheMOdynamics is governedby theHamiltonian
Hm ¼ ℏΩmðb†bþ 1

2
Þ and the TLS-MO parametric coupling

is Hc ¼ ℏgmΠeðb† þ bÞ where Ωm and b are, respectively,
themechanical frequency and the annihilation operator in the
mechanical mode and gm is the TLS-mechanical coupling
strength. The total Hamiltonian of the hybrid system reads
HðtÞ ¼ HqðtÞ þHm þHc. In what follows, we focus on the
ultrastrong coupling regime defined by gm ≥ Ωm. In addi-
tion, the TLS is coupled to an electromagnetic heat bath at
thermal equilibrium of temperature Tq and correlation time
τq, with γ being the spontaneous emission rate of the bare
TLS (reached for gm ¼ 0). We consider here the adiabatic
limit γ ≫ gm, which is fully compatible with the ultrastrong
coupling condition as long as Ωm ≪ γ.
Semiclassical description.—We assume that, at time t0,

the hybrid system is in the factorized state characterized
by the density matrix ρðt0Þ ¼ ρqðt0Þ ⊗ jϕmðt0Þihϕmðt0Þj

where ρqðtÞ is the reduced density matrix of the TLS and
jϕmðtÞi the (pure) state of the MO. We first focus on the
dynamics of the hybrid system over a few emission and
absorption events after time t0.
We choose a coarse graining time Δtq, verifying γ−1 ≫

Δtq ≫ τq such that the bath d.o.f. can be traced out [26]. As
Δtq ≪ Ω−1

m , g−1m , the MO remains in the pure state jϕmðtÞi
and acts as a classical external operator on the TLS, shifting
its frequency by δmðtÞ¼gmhϕmðtÞjbþb†jϕmðtÞi [16,25,27]
(see Supplemental Material [28] Sec. I). We consider here
a mechanical state jϕmðtÞi with a well-defined position;
i.e., the quantum variance VX ¼ hϕmðtÞjX2jϕmðtÞi −
hϕmðtÞjXjϕmðtÞi2 of the MO position operator X ¼
x0ðbþ b†Þ, x0 being the zero point motion, fulfills:

VX ≪
γ

gm
x20: ð1Þ

This condition ensures that the shift δm of the TLS
frequency takes a well-defined value. The master equation
for the total hybrid system reads:

_ρðtÞ ¼ −
i
ℏ
½HðtÞ; ρðtÞ� þ ðLδðtÞ

q ⊗ 1mÞ½ρðtÞ�; ð2Þ

δðtÞ ¼ δ0 þ δmðtÞ is the total detuning between the drive
and the TLS, 1m the identity superoperator in the MO
Hilbert space. We have introduced the Lindbladian due to
the coupling to the heat bath:

Lδ
q ¼ γðnδq þ 1ÞD½σ−� þ γnδqD½σþ�; ð3Þ

whereD½Â�ρ ¼ ÂρÂ† − 1
2
Â†Âρ − 1

2
ρÂ†Â for any operator Â

and nδq ¼ ½eℏðωLþδÞ=kBTq − 1�−1 is the mean number of
thermal photons. Note that we have neglected the modifi-
cations of Lindbladian [Eq. (3)] due to the drive, which are
solely noticeable for very strong driving

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ δ2

p ≳ ω0,
very high temperature kBTq ∼ ℏω0, or structured vacuum
[36] (see Ref. [28] Sec. II). The reduced master equation for
the TLS is straightforwardly derived:

_ρq ¼ −
i
ℏ
½HqðtÞ þ VqðtÞ; ρqðtÞ� þ LδðtÞ

q ρqðtÞ; ð4Þ

where we have introduced the effective Hamiltonian
VqðtÞ ¼ ℏδmðtÞΠe.
Equation (2) is our starting point to investigate the

dynamics of the MO over many fluorescence cycles of
typical duration γ−1. The essence of our approach can be
grasped by noticing that the MO-TLS coupling gm is much
lower than the TLS spectral width γ; hence the TLS
behaves like an effective Markovian reservoir of typical
correlation time γ−1, such that a master equation for the
reduced mechanical density matrix ρmðtÞ can be derived.
We thus choose a coarse graining time Δtm verifying that

(a) (b)

(c)

FIG. 1. (a) Hybrid system under study. (b) and (c) Semiclassical
evolution of the hybrid system [cf. Eqs. (4) and (5)]. (b) Modu-
lation of the TLS population PeðtÞ ¼ hejρqðtÞjei. (c) Shift of the
mean position of the MO in the phase plane (mechanical complex
amplitude βðtÞ ¼ Trfbρ0mðtÞg). Simulation parameters: Ωm=γ ¼
5 × 10−3, gm=γ ¼ 0.1, g=γ ¼ 1, Tq ¼ 0. The initial MO state is a
coherent state of amplitude βð0Þ ¼ −20.
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γ−1 ≪ Δtm ≪ γg−2m , Ω−1
m . On this timescale, quantum

correlations between the TLS and the MO build up and
vanish, such that the density matrix of the hybrid system is
always factorized ρðtÞ ¼ ρmðtÞ ⊗ ρqðtÞ, even in the ultra-
strong coupling case. At first order in gm, the mechanical
evolution is governed by the Von Neumann equation:

_ρ0m ¼ −
i
ℏ
½Hm þ VmðtÞ; ρ0mðtÞ�: ð5Þ

VmðtÞ ¼ ℏgmPeðtÞðbþ b†Þ describes the action of the TLS
on the MO and PeðtÞ ¼ Tr½ρqðtÞΠe� is the mean excitation
of the TLS.
Equations (4) and (5) are the semiclassical equations of

the hybrid optomechanical system. The corresponding
evolution is pictured in Figs. 1(b) and 1(c) in the case
where the MO is initially in a coherent state. On the one
hand, the TLS exerts a force on the MO, which translates
into a shift of the mechanical rest position. In particular, in
the ultrastrong coupling regime, a single excitation in the
quantum emitter creates a measurable displacement (i.e.,
larger than x0 the zero point fluctuations of the MO). This
hybrid force is a fully analogous to the radiation pressure
force in cavity mediated optomechanical setups.
Reciprocally, theMOmodulates the frequency of the TLS

by δ0mðtÞ ¼ gmTr½ρ0mðtÞðbþ b†Þ�, varying the value of the
total detuning δðtÞ ¼ δ0mðtÞ þ δ0 between the TLS and
the driving laser. In the adiabatic regime considered here,
this creates a modulation of the TLS population, which
follows the steady-state solution of optical Bloch equations
P∞
e ½δðtÞ� ¼ f2þ ½2δðtÞ=g�2 þ ðγ=gÞ2g−1. Therefore, mea-

sures of the TLS population, e.g., by recording the intensity
of the radiated light can be used to measure the mechanical
position. This measurement process is associated with a
noise of quantum origin that we shall now characterize.
Backaction noise induced by the TLS.—We now focus on

the evolution of the hybrid system on timescales larger than
γg−2m , for which the semiclassical description presented
above is not valid anymore as the noise induced by the TLS
on the MO (i.e., terms of second order in gm) starts to play a
noticeable role. Our strategy is inspired by the method of
Zwanzig [37], which was initially developed to describe
standard reservoirs involving a large number of d.o.f. We
have adapted this method to the present situation where
the spectrally broad TLS plays the role of a “finite-size
reservoir,” sensitive to the evolution of the MO. By coarse
graining the evolution of the hybrid system over a timescale
Δtm ≫ γ−1, we derived the reduced mechanical equation of
motion (see Ref. [28] Sec. III):

_ρmðtÞ ¼ −
i
ℏ
½Hm þ VmðtÞ; ρmðtÞ� þ Lh½ρmðtÞ�; ð6Þ

where

Lh½ρm� ¼ −
ΓhðtÞ
2x20

½X; ½X; ρm��: ð7Þ

The rate ΓhðtÞ is related to the fluctuation spectrum of the
TLS population at zero frequency, and is defined as:

ΓhðtÞ ¼ 2g2mRe
Z

∞

0

dτhδΠ̃eðtÞδΠ̃eðt − τÞi: ð8Þ

We have introduced δΠeðtÞ ¼ Πe − PeðtÞ, the tilde stand-
ing for the interaction representation with respect to the
semiclassical evolution (see Supplemental Material [28]
Sec. III. 1). Such a Linbladian has no effect on the average
position X or momentum P¼ðℏ=2x0Þiðb†−bÞ of the
MO, but increases the momentum variance VPðtÞ ¼
Trm½ρmðtÞP2� − Trm½ρmðtÞP�2, leading to a nonsymmetric
scattering of the mechanical quadratures. Equation (7)
describes the backaction noise of the continuous weak
measurement on the mechanical position encoded in the
fluorescence light [38]. In the adiabatic regime, considered
here that ΓhðtÞ verifies (see Ref. [28] Sec. IV):

ΓhðtÞ ¼
g2m
γ

2g2½4δðtÞ2 þ γ2�ðg2 þ 2γ2Þ
½4δðtÞ2 þ 2g2 þ γ2�3 : ð9Þ

Note that Γh > 0, such that the momentum variance can
only increase: therefore no cooling can be realized by
driving the TLS. The rate Γh characterizing the backaction
noise is plotted in Fig. 2(a). Taking into account the
intrinsic coupling of the MO to its own thermal bath with
temperature Tm, the full master equation governing the
mechanical evolution reads:

_ρm ¼ −
i
ℏ
½Hm þ VmðtÞ; ρm� þ Lh½ρm�

þ Γmðnm þ 1ÞD½b�ρm þ ΓmnmD½b†�ρm: ð10Þ

We have introduced Γm the MO damping rate in the bath,
and nm ¼ ðeℏΩm=kBTm − 1Þ−1 the mean number of thermal
phonons. The weak coupling regime of small gm corre-
sponds to Γm ≫ Γh: the TLS slightly modifies the effective
bath parameters, but the nature of the relaxation remains
thermal [23] (see Ref. [28] Sec. V). More interestingly,
Eq. (10) allows describing a less explored situation char-
acterized by Γh ∼ g2m=γ ≫ ðnm þ 1ÞΓm where the TLS-
induced mechanical fluctuations largely overcome the
Brownian motion. Such scattering stems from the emission
and absorption of photons by the driven dissipative TLS
[26]. An experimental characterization of this hybrid noise
is within reach [11,12,19].
Eventually, this quantum noise sets a fundamental limit

to the sensitivity of measurements based on the optical
detection of the MO position [40,41], just like radiation
pressure in cavity optomechanics [39]. To illustrate this
point, we focus on the readout of a static MO deflection δ1
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using the intensity of the TLS fluorescence. The sensitivity
of the measurement scheme is quantified by the noise
spectrum Smxx, which is the sum of two contributions: Smxx ¼
SIxx þ SBAxx (see Ref. [28] Sec. VI for analytical expres-
sions). The imprecision noise spectrum SIxx comes from
intensity fluctuations of the fluorescence and dominates at
low driving [see Fig. 2(c)]. At strong driving the quantum
noise induced by the TLS SBAxx characterized above domi-
nates. The total noise Smxx is minimized when both quantum
and imprecision noises are equal. Smxx is plotted in Fig. 2(d)
as a function of the detuning δ1 and the Rabi frequency g.
Its minimum value is reached for ðδ1=γ; g=γÞ ≃ ð8.8; 0.06Þ
and fulfills Smxx ¼ 4.01 × 10−29 m2=Hz. This value corre-
sponds to the standard quantum limit for the position
measurement on an oscillator 2x20=Γm ¼ 4 × 10−29 m2=Hz
[39]: thus probing this bound within hybrid optomechan-
ical devices is within experimental reach.

Quantum trajectory of the mechanical oscillator.—At
first sight, it may seem that the momentum variance of the
MO and thus the mechanical energy continuously increases
under the action the noise, apparently violating the second
law of thermodynamics. Actually, over long timescales
t ≫ γg−2m , the MO position fluctuations randomize the TLS
frequency, reducing the coupling to the driving light and
eventually switching off the noise source. In this limit the
master Eq. (10) is no longer valid, as Eq. (1) breaks down
because of the increase of VX. To describe the decoupling,
we adopt a quantum trajectory approach taking into
account the partial information about the MO position
encoded in the radiated light. In this description, at each
time t the MO is in a pure state jϕst

mðtÞi verifying a
stochastic Schrödinger equation obtained by unravelling
Eq. (10) [38]:

djϕst
mðtÞi ¼ −

idt
ℏ

½Hm þ VmðtÞ�jϕst
mðtÞi

−
dt
2
ΓhðtÞ½X − hXðtÞi2st�jϕst

mðtÞi
þ

ffiffiffiffiffiffiffiffiffiffi
ΓhðtÞ

p
dWðtÞ½X − hXðtÞist�jϕst

mðtÞi: ð11Þ

dWðtÞ is a real normalizedWiener increment of zero average
and verifying dW2ðtÞ ¼ dt. We have used Itō’s convention
for stochastic calculus and denoted h·ist the expectation
value in state jϕst

mðtÞi. ΓhðtÞ is computed by supposing that
the position variance verifies Eq. (1) at any time, such that
the effective detuning δðtÞ is defined. A trajectory jϕst

mðtÞi
represents the dynamics of the MO conditioned to a given
measurement record fXstðtÞgti≤t≤tf , of the position meas-
urement performed via the TLS. The measurement outcome
at time t is XstðtÞ ¼ hXðtÞi þ dWðtÞ=2 ffiffiffiffiffi

Γh
p

dt and is sto-
chastic due to the intrinsic randomness of quantum meas-
urement [38]. We have solved numerically Eq. (11) for a
single realization of the process. At each time t, the
scattering rate Γh is computed from the instantaneous
mechanical state jϕst

mðtÞi, generating the trajectory. We find
that, along each trajectory, theMO follows a randomwalk in
phase space, leading first to the heating of themechanics [see
Figs. 3(a) and 3(b)]. Meanwhile, the detuning of the TLS is
also scattered, inducing a spectral wandering of the TLS
emission line. At longer timescales, the mechanical ampli-
tude becomes large comparedwith g=gm and theMO spends
most of the time away from its rest position. The TLS is
brought off resonance with the drive, leading to a vanishing
heating rate Γh and a saturation of the mechanical energy
EmðtÞ.
We have plotted the Wigner function Wðx;pÞ¼

ð1=πℏÞR∞
−∞dyhϕst

mðtÞjxþyihx−yjϕst
mðtÞie2ipy=ℏ of the MO

at the initial time and after 3 × 103 mechanical oscillations
[see Figs. 3(c) and 3(d)]. One clearly sees the deformation
of the shape of the MO state in phase space due to the
quadrature-dependent scattering. We also note that the

(a)

(c) (d)

(b)

FIG. 2. MO position measurement through TLS fluorescence.
(a) Hybrid heating rate ΓhðtÞ induced by the TLS on the MO
[Eq. (9)] as a function of the total detuning δðtÞ between the TLS
and the driving field for three different Rabi frequencies g ¼ 10γ
(blue solid), g ¼ γ (orange dashed), and g ¼ 0.1γ (green dash
dotted). (b) Evolution of the variances of the MO’s position VX
and momentum VP along 10 mechanical periods for g=γ ¼ 1
(top) and g=γ ¼ 0.1 (bottom). The other parameters for (a) and
(b) are the same as Fig. 1. (c) Total measurement noise spectrum
Smxx and the two contributions: the backaction and imprecision
noise spectra SBAxx and SIxx at the mechanical frequency, for the
optimum value of the detuning δ1 ≃ 9.3γ allowing us to reach the
global minimum of the total noise, as a function of the Rabi
frequency. (d) Sensitivity of the MO position measurement as a
function of the detuning δ1 and the Rabi frequency g in units of γ.
The spectra in (c) and (d) are normalized to the minimum value of
Smxx, i.e., 4.01 × 10−29 m2=Hz, reached for δ1 ≃ 8.8γ and g ≃
0.06γ (white cross), which is just above the standard quantum
limit for the measurement of the position of an oscillator
2x20=Γm¼4×10−29m2=Hz [39]. Parameters: Ωm¼5MHz, gm¼
0.1GHz, γ¼1GHz, Γm¼Ωm=106, Tq¼0, and x0¼10−2 pm.
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position variance remains of the order of unity along any
trajectory (even on large timescales t ≫ Ω−1

m ): indeed, state
jϕst

mi is continuously updated with the information
extracted by the continuous position measurement per-
formed by the TLS, which reduces the quantum uncertainty
on X. Therefore, the effective detuning δðtÞ between the
drive and the TLS is defined at any time, validating the
trajectory based approach.
Conclusion.—Our model shows that a hybrid optome-

chanical system in the ultrastrong coupling regime can be
described by semiclassical equations at short times, pro-
vided that the TLS is strongly dissipative. Beyond the
semiclassical regime, the TLS induced mechanical fluctu-
ations either generate an effective thermal bath (small gm),
or the nonsymmetrical scattering of the MO quadratures
(large gm). This quantum noise is the equivalent of the
radiation pressure noise in cavity optomechanics, and
appears as a fundamental limit of hybrid optomechanical
detection sensitivity. Noticeable deviations from the semi-
classical description can be observed over longer time-
scales and our study allows us to simulate quantum
trajectories of the system using a stochastic Schrödinger
equation, which is a precious tool to describe the TLS and
MO fluctuating observables. These quantities are especially
relevant to investigate the quantum limit of sensing [42]
in the context of hybrid optomechanics, and to perform
further thermodynamic studies, e.g., probe fluctuation
theorems [43], or design nanoheat engines based on
optomechanical devices [44–46]. Finally, the method

presented here is a quite general one allowing us to treat
the case of any quantum system in strong interaction with a
finite size reservoir [47–50].
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of the mechanical quantities (see Fig. 2). (c) and (d) Wigner
function Wðx; pÞ of the MO at the initial time when the drive
of the TLS is switched on (c) and after 3 × 103 mechanical
oscillations (d). The simulation parameters are the same as Fig. 1.
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