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We present a link between parametrizations of alternative theories of gravity on large and small scales in
cosmology. This relationship is established using theoretical consistency conditions only. We find that in
both limits the “slip” and “effective Newton’s constant” can be written in terms of a set of four functions of
time, two of which are direct generalizations of the α and γ parameters from post-Newtonian physics. This
generalizes previous work that has constructed frameworks for testing gravity on small scales, and is to the
best of our knowledge the first time that a link between parametrizations of gravity on such very different
scales has been established. We expect our result to facilitate the imposition of observational constraints, by
drastically reducing the number of functional degrees of freedom required to consistently test gravity on
multiple scales in cosmology.
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Introduction.—There has recently been a lot of interest in
testing the validity of Einstein’s theory of general relativity
(GR) using cosmological observables [1]. To fully exploit
such tests requires us to understand the predictions that
alternative theories of gravity could make for observations
made over a wide range of scales, and to develop suitable
frameworks for parametrizing these phenomena. This is a
challenging prospect, as the physics involved in horizon-
sized cosmological perturbations is quite different to that
which occurs on smaller scales, where galaxies and clusters
of galaxies are present.
We show that it is possible to relate the functions that

parametrize gravity on nonlinear scales (k≳ 10−2 Mpc−1)
to those that parametrize it on very large scales
(k≲ 10−4 Mpc−1), where k is the wave number of pertur-
bations. Our approach to this problem is to lean heavily on
the parametrized post-Newtonian (PPN) formalism [2], and
to directly extend it to cosmology. Part of the reason for this
is that the PPN approach has proven to be highly success-
fully in parametrizing gravitational physics on solar system
and astrophysical scales. Another is that the PPN formalism
is known to encompass a wide array of alternative theories.
Our final results give a parametrization of gravity in
cosmology that, at leading order in perturbations, depends
on only four functions of time. We call this approach
parametrized post-Newtonian cosmology (PPNC) [3].
We will consider perturbations about an FLRW back-

ground, which in longitudinal gauge has the scalar part

ds2 ¼ a2
�
−ð1 − 2ΦÞdτ2 þ ð1þ 2ΨÞ ðdx

2 þ dy2 þ dz2Þ
ð1þ 1

4
κr2Þ2

�
;

where a ¼ aðτÞ is the scale factor, τ ¼ R
a−1dt is con-

formal time, κ is the spatial curvature parameter, and

r2 ¼ x2 þ y2 þ z2. We then suppose that the linearized
field equations that govern the metric potentials above can
be written as

1

3
∇2Ψ −H2Φ −H _Ψþ κΨ ¼ −

4πG
3

μδρa2; ð1Þ

1

3
∇2Φþ 2 _HΦþH _Φþ Ψ̈þH _Ψ ¼ −

4πG
3

μð1 − ζÞδρa2;
ð2Þ

where μ ¼ μðτ;xÞ and ζ ¼ ζðτ;xÞ are yet to be determined
functions of time and scale, where δρ is the perturbation to
the energy density, and where dots denote d=dτ and
H ¼ _a=a. This follows the same logic as the PPN formal-
ism, where the consequences of additional gravitational
degrees of freedom are encoded in the parameters μ and ζ,
rather than being included as extra terms that have no
counterparts in Einstein’s theory.
If μ ¼ 1 and ζ ¼ 0 then Eqs. (1)–(2) can be seen to

reduce to those of GR. In the quasistatic limit they also
reduce to well-known “effective gravitational constant” and
“slip” parameters, defined via [4,5]

μ ¼ −
∇2Ψ

4πGδρa2
and ζ ¼ 1 −

∇2Φ
∇2Ψ

:

Alternative theories of gravity generically result in μ ≠ 1
and ζ ≠ 0. It is therefore of direct physical interest to
constrain these parameters with observations, to learn about
how gravity behaves on cosmological scales.
The purpose of the current Letter is to relate the small

and large-scale behavior of these parameters to each other,
and to the background expansion. This will be achieved
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through the application of the following three consistency
criteria: (i) On small scales, the gravitational field of
nonlinear structures should be describable using the para-
metrized post-Newtonian formalism. (ii) The global rate of
expansion of the Universe should be compatible with
gravitational fields of the nonlinear structures within it.
(iii) On very large scales, the evolution of perturbations in
any theory should be consistent with the expansion rate of
the Friedmann solutions of that theory. We expect these
criteria to be applicable to a wide range of metric theories of
gravity, which are in a suitable sense “close” to GR, and
that both admit perturbed FLRW solutions and fit into the
PPN framework (see Refs. [2,3] for explicit examples). We
will consider the implications of each of these three
conditions in turn, before returning to show that together
they give the values of μ and ζ, on both large and small
scales, in terms of a set of just four unspecified functions of
time: fα; γ; αc; γcg. The first two of these are, in fact,
exactly the same as the α and γ parameters that occur in the
PPN formalism (now allowed to vary over cosmic time),
while the second two are intrinsic to cosmology. We will
refer to the full set of four functions as the PPNC
parameters. We set c ¼ 1 throughout this Letter. Greek
letters are used to denote spatial indices, and Latin letters to
denote space-time indices.
Condition (i): A viable weak field.—The industry stan-

dard for investigating and constraining theories of gravity
in the slow motion and weak field regime is the PPN
formalism [2]. This formalism is built on the post-
Newtonian expansion of gravitational and matter fields,
and is expected to be valid in the presence of all nonlinear
structures down to the scale of neutron stars [6]. All
reasonable gravitational potentials are then postulated,
and (constant) parameters are included before each of
them in the metric, in order to create a general geometry
that can be both constrained by observations and compared
to the predictions of individual theories.
It seems reasonable to assume that the gravitational fields

of galaxies and clusters of galaxies should also be described
by post-Newtonian expansions, as long as these systems are
small enough that the Hubble flow across them is still much
smaller than the speed of light (i.e., that they are subhorizon
sized). If this is the case, then we can directly apply the
PPN formalism to describe the gravitational fields within
their vicinity. Such a description can be shown, by direct
transformation, to be isometric to a region of perturbed
FLRW space-time [7,8].
In this case the coordinate transformations t̃ →

tþ 1
2
aHr2 and x̃μ → axμð1þ 1

4
H2r2Þ allow the scalar

gravitational potentials in the perturbed FLRW geometry
to be written in terms of those in the isometric perturbed
Minkowski space as [7]

Φ ¼ 1

2
h00 −

1

2
_Hr2; ð3Þ

Ψ ¼ 1

6
δμνhμν þ

1

4
ðH2 þ κÞr2; ð4Þ

where the post-Newtonian metric is given by
gab ¼ ηab þ hab. If the post-Newtonian gravitational fields
are then taken to be given by the form they take in the PPN
formalism, we have [2,3]

h00 ¼ 2αU þ 1

3
αcr̃2 and δμνhμν ¼ 6γU þ γcr̃2;

where U is the Newtonian gravitational potential that
satisfies ∇̃2U ¼ −4πGρ, where ρ is the energy density,
and where tildes denote coordinates in the Minkowski
space. The two additional terms, proportional to αc and γc
in these equations, are introduced in order to include the
effects of Λ, and any of the other slowly varying (or
constant) additional fields that are often introduced in
alternative theories. This gives a fully specified form for
the cosmological scalar gravitational potentials on small
scales, where nonlinear structures are present, in terms of a
set of four familiar quantities (see Ref. [3] for further
explanation).
The functions α, γ, αc, and γc that are used here should in

general be expected to be functions of time only, if
inhomogeneous gravitational fields are expected to be
sourced by matter fields (see Ref. [3] for details). The
reader will note that the PPN parameter α has been made
explicit in the expression for h00. This is usually set to
unity when the PPN formalism is presented, so that the
standard Newton-Poisson equation is recovered in the
appropriate limit. Here we have made this parameter
explicit as we only require the Newton-Poisson equation
with the experimentally recovered value of G to be
applicable at the present moment of time. Earlier (or later)
cosmological epochs may have different values of
Newton’s constant in alternative theories of gravity [9].
The second PPN parameter, γ, affects Shapiro time delay
and deflection of light rays, among other things, and is
currently most strongly constrained from observations of
radio signals from the Cassini spacecraft to be γ ¼ 1þ
ð2.1� 2.3Þ × 10−5 [10]. For the case of GR, α ¼ γ ¼ 1 and
αc ¼ −2γc ¼ Λ for all time.
Condition (ii): A compatible Hubble rate.—The Hubble

rate of the Universe’s expansion is not independent of
the gravitational fields of the objects within it. On the
contrary, one can build explicit constructions in which the
global expansion emerges from the Newtonian-level
gravitational fields of the structures it contains [7], with
post-Newtonian fields giving small corrections [8,11,12].
Such models make clear that the large-scale expansion of
a cosmological model should be able to be parametrized
with the same set of functions as weak gravitational fields
on small scales. This fact was used in Ref. [3] to extract
the large-scale expansion of a Universe that is governed
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by the PPN metric on small scales. Here we generalize this
construction to universes constructed from regions of
space with periodic boundary conditions, rather than
the more restrictive reflection symmetry that was previ-
ously assumed.
First we take two spatial derivatives of Eqs. (3) and (4),

and average the result over a large volume of space,
to find

H2 ¼ 8πG
3

γhρia2 − 2γca2

3
− κ; ð5Þ

_H ¼ −
4πG
3

αhρia2 þ αca2

3
; ð6Þ

where angular brackets denote the spatial average of the
quantity within, such that h� � �i ¼ R � � � d3x= R d3x. In
deriving these equations we have used the result h∇2Φi ¼
0 ¼ h∇2Ψi for a region of space with periodic boundary
conditions, and we have assumed that the PPNC parameters
fα; γ; αc; γcg are not functions of space. Failure of these
results to hold would indicate the presence of large
cosmological backreaction [13], and would invalidate the
use of a global FLRW background, which is not the
scenario that we wish to consider here.
Subtracting the averaged Eqs. (5)–(6) from the original

Eqs. (3)–(4) then gives

∇2Φ ¼ −4πGαδρa2 and ∇2Ψ ¼ −4πGγδρa2; ð7Þ

where δρ ¼ ρ − hρi. It can be seen that the PPN parameters
α and γ parametrize both the matter terms in the Friedmann
Eqs. (5)–(6) and the small-scale cosmological perturbations
in Eqs. (7). On the other hand, the cosmological parameters
αc and γc occur only in the Friedmann equations, and take
the place of the dark energy terms.
The reader may note that in addition to the equations

above, we have an additional integrability condition on
fα; γ; αc; γcg given by

4πGhρi ¼ ðαc þ 2γc þ γ0cÞ=ðα − γ þ γ0Þ; ð8Þ

where 0 ¼ d=d ln a. The derivation of this equation uses the
result hρi ∝ a−3, which can be obtained from averaging
the energy-momentum conservation equations, as well as
the standard assumption that we do not have any inter-
actions between matter fields at the level of the background
cosmology. Explicit expressions for these PPNC parame-
ters, for scalar-tensor and vector-tensor theories of gravity,
were derived in Ref. [3]. The following sections extend the
domain of validity of this work to horizon-sized scales, and
so give information on the scale dependence of modified
gravity parameters.
Condition (iii): Large-scale perturbations.—On suffi-

ciently large scales the spatial gradients of perturbations are

expected to be become much smaller than their time
derivatives. Neglecting their contribution to the field
equations then results in a situation where only the time
dependence of the gravitational potentials is of significance
for their evolution. It therefore becomes possible to model
these perturbations as Friedmann solutions with perturbed
energy density and spatial curvature, as well as space and
time coordinates. As noted by Bertschinger, the evolution
of such perturbations must then be specified entirely by the
Friedmann equations, and can be deduced without knowing
any further information about the field equations of
gravity [14].
In the present situation, this result is especially useful as

our parametrized Friedmann Eqs. (5)–(6) can now be used
to determine the form of very-large-scale perturbations.
The result must then also be dependent only on the PPNC
parameters fα; γ; αc; γcg. The first step in doing this is
to perturb the FLRW background in spherical polar
coordinates such that the conformal time τ → τ þ δτ and
radial coordinate χ → χð1þ δχÞ, and to perturb spatial
curvature and energy density such that κ → κð1þ δκÞ and
hρi → hρið1þ δÞ, where δτ, δχ , δκ, and δ are all small
quantities. Furthermore, the quantity δκ must also be a
constant, as it is a perturbation of the (constant) spatial
curvature. The χ coordinate here is such that the conformal
part of the spatial line element can be written as
ds̄2ð3Þ ¼ dχ2 þ r̂2ðχ; κÞdΩ2, where dΩ is the solid angle.
Writing the large-scale perturbation in terms of the

transformed Friedmann solution then means that the
following must be true [14]:

δχ ¼ −
1

2
δκ; ð9Þ

Φþ Ψ ¼ ∂
∂τ

�
δχ
H

�
1 − 2

∂ ln a
∂ ln κ

�
−
Ψ
H

�
þ δχ ; ð10Þ

where we have eliminated the dependence on δτ, and where
Eq. (9) tells us δχ must be a constant. Using hρi ∝ a−3, we
can then Taylor expand δ to obtain δ ¼ −3ðΨ − δχÞ, and
hence _δ ¼ −3 _Ψ (as expected from perturbing the continuity
equation on very large scales). Using this result to replace
δχ in Eq. (10), and performing further manipulations, one
finds

−H2Φ −H _Ψþ κΨ ¼ −
δ

3
ðH2 − _Hþ κÞ; ð11Þ

2 _HΦþH _Φþ Ψ̈þH _Ψ ¼ δ

3

�
2 _HH − Ḧ

H

�
: ð12Þ

Finally, we can simplify the right-hand sides of these
equations by using the parametrized Friedmann
Eqs. (5)–(6), and the constraint in Eq. (8), to get
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−H2Φ −H _Ψþ κΨ

¼ −
4πG
3

δρa2
�
γ −

1

3
γ0 þ 1

12πGhρi γ
0
c

�
ð13Þ

and

2 _HΦþH _Φþ Ψ̈þH _Ψ

¼ −
4πG
3

δρa2
�
α −

1

3
α0 þ 1

12πGhρi α
0
c

�
: ð14Þ

These results can be compared to Eqs. (1)–(2). They
constitute a parametrization of superhorizon-sized fluctua-
tions in terms of the PPNC parameters and their time
derivatives only. The reader may note that nowhere in this
derivation have we assumed anything about the field
equations of gravity, except that they should result in the
parametrized Friedmann Eqs. (5)–(6), which themselves
are a direct result of treating gravity on small scales as
being governed by the PPN metric.
Results.—We can now bring together the results above to

demonstrate the link between parametrizations of gravity
on large and small scales in cosmology. Comparing Eqs. (7)
with Eqs. (1)–(2) allows the effective gravitational constant
parameter μ and the gravitational slip parameter ζ to be
related to the α and γ parameters via [3]

lim
k→∞

μ ¼ γ; ð15Þ

lim
k→∞

ζ ¼ 1 −
α

γ
; ð16Þ

where k → ∞ corresponds to the small-scale limit. We
expect this parametrization to be valid for k≳ 0.01 Mpc−1,

where nonlinear structures exist, and post-Newtonian
expansions are expected to be valid.
Similarly, comparing Eqs. (13)–(14) with Eqs. (1)–(2)

allows us to read off

lim
k→0

μ ¼ γ −
1

3
γ0 þ 1

12πGhρi γ
0
c; ð17Þ

lim
k→0

ζ ¼ 1 −
α − α0=3þ α0c=12πGhρi
γ − γ0=3þ γ0c=12πGhρi

; ð18Þ

where primes again represent d=d ln a, and where the
spatial gradient terms in Eqs. (1)–(2) are expected to be
negligible. Here the limit k → 0 indicates that this para-
metrization should be expected to be valid on superhorizon
scales, such that k≲ 0.0001 Mpc−1. The reader may note
that the terms involving hρi can be replaced by our
parameters using Eq. (8), if required.
The first thing that can be noted about Eqs. (15)–(18) is

that the large and small-scale parametrizations can both be
written exclusively in terms of the PPNC parameters,
fα; γ; αc; γcg. These parameters also occur in the back-
ground Friedmann Eqs. (5)–(6), and therefore provide a
complete set (in addition to the usual cosmological param-
eters) that can parametrize gravitational physics over a wide
range of scales. Further, the reader may note that if
fα; γ; αc; γcg are all independent of time then the large
and small-scale limits of the slip and effective Newton’s
constant are identical. This is not a surprise, as independ-
ence from spatial scale should be expected to lead to
independence from time in metric theories of gravity. These
results reduce to those expected from GR, when α ¼ γ ¼ 1
and αc ¼ −2γc ¼ Λ, as expected [15,16].
Equations (15)–(18) represent the main results of this

Letter. They extend parametrized gravity from small non-
linear scales to large horizon-sized scales. In order to
show the power of this approach, we have considered
indicative observational constraints on the individual
PPNC parameters in Table I. These are then subsequently
used in Fig. 1 to show how current bounds on the values
of fα; γ; αc; γcg can be used to derive bounds on ζ and μ on
both small and large scales. It is the possible timevariation of
the PPNC parameters that is the reason for the difference
between the value of ζ and μ − 1 over this range of k.
The constant value of ζ and μ in the regions k≲ 10−4 Mpc−1

and k≳ 10−2 Mpc−1 is due to the scale independence of
fα; γ; αc; γcg, as discussed above. Because of the different
values of ζ and μ in these two regions, we require scale
dependence in the region 10−4 Mpc−1 ≲ k≲ 10−2 Mpc−1.
We have achieved this with an example interpolating curve
in Fig. 1.
Conclusions.—We have obtained a direct link between

horizon-sized cosmological perturbations, and those on
smaller nonlinear scales, in terms of a set of just four
functions of time: fα; γ; αc; γcg. This set of functions

FIG. 1. The small-scale (k≳ 0.01 Mpc−1) and large-scale
(k≲ 10−4 Mpc−1) limits of the ζ (red) and μ (blue) parameters
at the present time, connected by an interpolating tanh function
(dotted). We have used the values of fα; γ; αc; γcg and their
associated errors and derivatives from Table I. The shaded areas
show the 1σ confidence regions, where errors have been assumed
to be independent.
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parametrize a wide array of minimal modifications to GR,
of the type that has been long used to test gravity in the
Solar System and binary pulsars. Here we have found that
they can be used to describe gravitational physics in the
Solar System, through astrophysical and small cosmologi-
cal scales, all the way up to the superhorizon scales
involved in considering the entire observable universe.
To the best of our knowledge, this is the first time that

theories of gravity have been parametrized consistently on
such a large range of scales, using such a compact set of
parameters. These results can be contrasted with the para-
metrized post-Friedmannian (PPF) [20–25] and effective
field theory (EFT) [26–35] approaches, which can contain
larger numbers of unknown functions, and that often
require the degrees of freedom in the theory to be specified
from the outset. We expect our parametrization to be useful
for testing minimal deviations from GR with future large-
scale surveys [36–38], and, in particular, for future pre-
cision constraints on gravity in cosmology. Future work
will consider the effect of screening mechanisms and fifth
forces in this approach [39].
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