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Precision measurements of the inverse-square law via experiments on short-range gravity provide
sensitive tests of Lorentz symmetry. A combined analysis of data from experiments at the Huazhong
University of Science and Technology and Indiana University sets simultaneous limits on all 22 coefficients
for Lorentz violation correcting the Newton force law as the inverse sixth power of distance. Results are
consistent with no effect at the level of 10−12 m4.
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Lorentz symmetry, the idea that physical laws are
unchanged under rotations and boosts, is built into both
general relativity (GR) and the standard model. Although
GR provides an impressive description of a wide variety of
gravitational phenomena, the successful merger of gravi-
tation and quantum physics may involve a modification of
its foundational principles. This could produce observable
deviations from Lorentz symmetry, emerging from a
unified theory such as strings [1].
Since no compelling evidence for Lorentz violation (LV)

currently exists, model-independent searches for LV in
gravity play an essential role in testing the foundations of
GR. A powerful model-independent approach to describing
possible low-energy signals of LV is effective field theory
[2], which is widely adopted for experimental analyses
studying Lorentz symmetry [3,4]. In the pure-gravity limit,
this approach uses a Lagrange density containing the usual
Einstein-Hilbert term and a series of all observer-scalar
terms involving coefficients contracted with gravitational-
field LV operators of increasing mass dimension d.
Precision experiments testing the inverse-square law at

short range provide crucial and specific probes of gravita-
tional properties [5], including tests of Lorentz symmetry in
gravity at submillimeter distances [6–8]. Applying the
techniques of effective field theory in this context shows
that LVoperators can lead to direction-dependent corrections
to the Newton force that fall as inverse square, inverse fourth,
inverse sixth, and higher powers of distance [9–11]. A
complete classification of possible effects is known [12],
but no specific predictions exist for their sizes. Moreover,
many of these corrections are experimentally unexplored,

with even comparatively strong “countershaded” LV cou-
plings remaining untested to date [13]. Model-independent
experimental analyses without preconceived sensitivity
expectations are thus vital in investigating this foundational
property of GR.
In the present work, we perform a combined analysis of

data from short-range experiments at the Huazhong
University of Science and Technology (HUST) and
Indiana University (IU) to complete a model-independent
search for LVeffects involving operators of mass dimension
d ¼ 8, which produce a direction-dependent force inversely
proportional to the sixth power of distance. Our results are
consistent with no effects at the level of 10−12 m4 for all 22
independent coefficients for LV appearing in the Newton
limit, thereby excluding a short-range LV gravitational force
down to a distance scale of less than a millimeter.
For d ¼ 8, the LV modification to the Newton potential

between two test masses m1 and m2 is given in spherical
polar coordinates by [11]

VLVðr⃗Þ ¼ −G
X
jm

m1m2

r5
Yjmðθ;ϕÞkNð8Þlabjm ð1Þ

in the laboratory frame. Here, the vector r⃗ ¼ r⃗1 − r⃗2 ≡
ðr cosϕ sin θ; r sinϕ sin θ; r cos θÞ separates m1 and m2,
j ¼ 4 or 6, and m is an integer in the range −j ≤ m ≤ j.

The LV effects are controlled by the coefficients kNð8Þlabjm ,
which are complex numbers with dimensions of length to
the fourth power.
The explicit form of the coefficients kNð8Þlabjm is frame

dependent, so experimental results must be reported in a
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specified frame. In Cartesian inertial frames in the vicinity
of Earth, the coefficients can be taken as constant [14]. The
canonical frame used in the literature to present results is
the Sun-centered frame with right-handed Cartesian coor-
dinates ðT; X; Y; ZÞ chosen such that T is zero at the 2000
vernal equinox, the X axis points from Earth’s position at
T ¼ 0 to the Sun, and the Z axis is parallel to Earth’s
rotation axis [15]. Earth-based laboratories are noninertial
due to Earth’s rotation, so the laboratory-frame coefficients

kNð8Þlabjm acquire dependence on sidereal time [16]. In
standard laboratory Cartesian coordinates with the x axis
pointing to the south, the y axis to the east, and the z axis to

the local zenith, the laboratory-frame coefficients kNð8Þlabjm

can be expressed in terms of time-independent coefficients

kNð8Þjm in the Sun-centered frame by the relation [11]

kNð8Þlabjm ¼
X
m0

eim
0ω⊕T⊕dðjÞmm0 ð−χÞkNð8Þjm0 ; ð2Þ

where Earth’s boost is treated as negligible. In this expres-
sion, ω⊕ ≃ 2π=ð23 h 56 minÞ is Earth’s sidereal frequency
and T⊕ ≡ T − T0 is the local laboratory sidereal time, which
differs from T by a longitude-dependent offset [17]:
T0 ≃ −3.2 h for HUST, and T0 ≃ 10.2 h for IU. Also, χ is

the laboratory colatitude, and dðjÞmm0 are the little Wigner
matrices [18]. The primary goal of the experimental analysis

is tomeasure the coefficients kNð8Þjm in the Sun-centered frame.
The inverse-fifth corrections to the Newton potential

imply that experiments testing gravity at short range have
excellent sensitivity to LV effects. For d ¼ 8, the index m0
in Eq. (2) takes integer values in the range −6 ≤ m0 ≤ 6, so
the potential includes components up to the sixth harmonic
of ω⊕ and can be expressed as a Fourier series in T,

VLVðr⃗Þ ¼ −
Gm1m2

r5

�
c0 þ

X6
m¼1

cm cosðmω⊕T⊕Þ

þ sm sinðmω⊕T⊕Þ
�
: ð3Þ

The 13 Fourier amplitudes in this expression are

functions of the 22 independent coefficients kNð8Þjm in the
Sun-centered frame.
Numerical methods can be used to calculate the gravita-

tional LV interaction between finite test masses. Most
inverse-square law tests use masses with planar geometry
[19,20]. In addition to suppressing theNewtonbackground, a
planar geometry tends to average and suppress the angular
oscillations of the LV signal [7,21,22], thereby necessitating
careful integration of the forces associated with Eq. (1). For
practical applications, it can thus be convenient to calculate
using a local Cartesian coordinate system. The spherical
harmonics inEq. (1) can be expanded in symmetric trace-free
tensors c<J>jm according to [23]

Yjmðθ;ϕÞ ¼ c�hJijm nhJiðx; y; zÞ; ð4Þ
where

nhJiðx; y; zÞ ¼
rjþ1

ð−1Þjð2j − 1Þ!! ∂J
1

r
: ð5Þ

In this expression, ∂J represents ∂k1…∂kj , and chJinhJi
involves a summation over all j pairs of repeated indices.

The tensor chJijm is given by

chJijm ¼ ð2jþ 1Þ!!
4πj!

Z
nhJiY�

jmðθ;φÞdΩ: ð6Þ

Applying these results, the 13 amplitudes in the Fourier
series (3) can be expressed in terms of Cartesian coordinates

and the coefficients kNð8Þjm in the Sun-centered frame. These
expressions are given in Table I. The first part of this table

displays the 13 amplitudes in terms of the coefficients kNð8Þjm

and 22 independent functions αjðr̂; χÞ, j ¼ 1;…; 22, of the
test mass geometry and the colatitude χ. The complex-

conjugation relation kNð8Þ�jm ¼ ð−1ÞmkNð8Þjð−mÞ [24] is used to

express the kNð8Þjm in terms of their real and imaginary parts.
The functions αjðr̂; χÞ are specified in the second part of the
table, using the notation

x̃¼x
r
cosχþz

r
sinχ; ỹ¼y

r
; z̃¼−

x
r
sinχþz

r
cosχ: ð7Þ

With these results, it is straightforward to obtain an analytical
expression for the LV force between a point and finite
rectangular plate. We note that the LV force between a point
and an infinite plate vanishes, as in the d ¼ 6 case [7,22]. For
two finite rectangular plates, we needmerely perform a triple
integration to obtain the LV force or torque.
In general, measurements of the 13 Fourier amplitudes in

a single experiment constitute independent signals but are
insufficient to constrain simultaneously the 22 independent
coefficients kNð8Þjm . However, two distinct data sets can
achieve complete coverage. Indeed, this is true for LV
force corrections proportional to r2−d, for which the
number of coefficients is 4d − 10 and the maximum
number of signals from any one experiment is 2d − 3. In
the present case with d ¼ 8, all 22 coefficients could in
principle be measured independently using two data sets
with distinct harmonics from the HUST-2015 experiment
or using two data sets from the IU-2002 and IU-2012
experiments. Here, to maximize the sensitivity to the

coefficients kNð8Þjm , we perform a combined analysis of these
four data sets.
Details of the HUST-2015 experiment are provided in

Ref. [19]. A brief summary is provided here. A bilaterally
symmetric I-shaped pendulum is suspended near an
attractor disk with eightfold symmetry. Two planar tung-
sten test masses of thickness ∼200 μm, together with two
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additional tungsten plates slightly offset to compensate the
Newton torque from r−2 interactions, are mounted on either
end of the pendulum facing the attractor. The attractor
consists of eight similar tungsten source plates alternating
with eight compensation plates. The centers of the attractor
and pendulum are aligned and the gap between the test and
source plates is maintained at 295 μm. The pendulum twist
is controlled by a feedback system, with differential
voltages applied to two capacitive actuators on the pen-
dulum. In the presence of a non-Newton interaction,
rotating the attractor produces a torque. The attractor
rotates at frequency f0 ¼ 2π=ð3846.12 sÞ, so the nominal
signal torque oscillates at 8f0 and is well separated from the
drive frequency, effectively suppressing vibrational back-
grounds. The experiment is designed to produce approxi-
mate null measurements by double compensating for both
the test and source masses.
For a Yukawa-type interaction, the torque is maximal

when the source and test masses are face to face and is
minimal when they are offset. However, the LV interaction
averages to zero for symmetric configurations [7,22], so
significant contributions appear at the higher harmonics
16f0, 24f0, …. For the d ¼ 6 case studied earlier [8], in
which the LV signal varies as r−4 and is well nulled by the
compensation scheme, the 16f0 signal exceeds the 8f0 one
by an order of magnitude and only the 16f0 data were used
for the analysis. In contrast, the d ¼ 8 interaction of interest
here varies as r−6 and is less well nulled, so the 8f0 and
16f0 contribute about equally. The d ¼ 8 signals at higher
harmonics are comparable, but they are swamped by
higher-level noise in the data [19], so we use only the
8f0 and 16f0 components in the present analysis.
The LV signal torque in the HUST-2015 experiment can

be expressed as

τLV ¼ C0 þ
X6
m¼1

Cm cosðmω⊕T⊕Þ þ Sm sinðmω⊕T⊕Þ; ð8Þ

where the Fourier amplitudes Cm, Sm can be obtained by
integration of the amplitudes cm, sm appearing in Eq. (3)
and Table I. This effectively replaces the functions αjðr̂; χÞ
with transfer coefficients Λj, defined as

Λj ¼ Gρ1ρ2

ZZ ∂
∂θ

αjðr̂; χÞ
r5

dV1dV2; ð9Þ

in analogy with Eq. (25) of Ref. [21] for the d ¼ 6 case. For
example, integrating the first row of Table I via this

procedure yields C0 ¼ Λ1k
Nð8Þ
40 þ Λ2k

Nð8Þ
60 . The integration

(9) computes the change in torque on the pendulum as the
source and compensation plates on the attractor are swept
across the faces of the test and compensation plates on the
pendulum, obtaining the LV torques τLV;8 and τLV;16 at
the 8f0 and 16f0 response frequencies of the pendulum.

TABLE I. Expressions for the Fourier amplitudes in Eq. (3).

Quantity Expression

c0 α1k
Nð8Þ
40 þ α2k

Nð8Þ
60

c2 α3Rek
Nð8Þ
42 þ α4ImkNð8Þ42

þα5Rek
Nð8Þ
62 þ α6ImkNð8Þ62

s2 α4Rek
Nð8Þ
42 − α3ImkNð8Þ42

þα6Rek
Nð8Þ
62 − α5ImkNð8Þ62

c4 α7Rek
Nð8Þ
44 þ α8ImkNð8Þ44

þα9Rek
Nð8Þ
64 þ α10ImkNð8Þ64

s4 α8Rek
Nð8Þ
44 − α7ImkNð8Þ44

þα10Rek
Nð8Þ
64 − α9ImkNð8Þ64

c6 α11Rek
Nð8Þ
66 þ α12ImkNð8Þ66

s6 α12Rek
Nð8Þ
66 − α11ImkNð8Þ66

c1 α13Rek
Nð8Þ
41 þ α14ImkNð8Þ41

þα15Rek
Nð8Þ
61 þ α16ImkNð8Þ61

s1 α14Rek
Nð8Þ
41 − α13ImkNð8Þ41

þα16Rek
Nð8Þ
61 − α15ImkNð8Þ61

c3 α17Rek
Nð8Þ
43 þ α18ImkNð8Þ43

þα19Rek
Nð8Þ
63 þ α20ImkNð8Þ63

s3 α18Rek
Nð8Þ
43 − α17ImkNð8Þ43

þα20Rek
Nð8Þ
63 − α19ImkNð8Þ63

c5 α21Rek
Nð8Þ
65 þ α22ImkNð8Þ65

s5 α22Rek
Nð8Þ
65 − α21ImkNð8Þ65

α1 ð3=16 ffiffiffi
π

p Þð3 − 30z̄2 þ 35z̄4Þ
α2 − 1

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið13=πÞp ð5 − 105z̄2 þ 315z̄4 − 231z̄6Þ
α3 þ iα4 − 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið5=2πÞp ðx̄þ iȳÞ2ð1 − 7z̄2Þ
α5 þ iα6 1

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1365=πÞp ðx̄þ iȳÞ2ð1 − 18z̄2 þ 33z̄4Þ
α7 þ iα8 3

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið35=2πÞp ðx̄þ iȳÞ4
α9 þ iα10 − 3

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið91=2πÞp ðx̄þ iȳÞ4ð1 − 11z̄2Þ
α11 þ iα12 1

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3003=πÞp ðx̄þ iȳÞ6
α13 þ iα14 − 3

4

ffiffiffiffiffiffiffiffiffiffiffiffið5=πÞp ðx̄ − iȳÞz̄ð3 − 7z̄2Þ
α15 þ iα16 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið273=2πÞp ðx̄ − iȳÞz̄ð5 − 30z̄2 þ 33z̄4Þ
α17 þ iα18 3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið35=πÞp ðx̄ − iȳÞ3z̄
α19 þ iα20 − 1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1365=πÞp ðx̄ − iȳÞ3z̄ð3 − 11z̄2Þ
α21 þ iα22 3

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1001=πÞp ðx̄ − iȳÞ5z̄
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The numerical results for the transfer coefficients Λj for
both frequencies are listed in the second and third columns
of Table II. The uncertainty on all Λj is 10−6 Nm=m4.
In the IU-2002 and IU-2012 experiments, the test masses

consist of two planar tungsten oscillators of approximate
thickness 250 μm, separated by a gap of about 80 μm and
with a stiff conducting shield between them to suppress
backgrounds. A schematic is given in Fig. 1 of Ref. [6],
while details of the IU-2002 geometry are given in
Refs. [25,26] and of the IU-2012 geometry in Ref. [6].
The active “source” mass drives the force-sensitive “detec-
tor” mass at a resonance near 1 kHz. At this frequency, a
simple passive isolation system with high bending stiffness
can be used for vibration isolation. The oscillations of the
detector mass are detected using capacitive transducers
coupled to a differential amplifier [27]. The signal is passed
to a lock-in amplifier referenced by the waveform driving
the source mass, and the output is taken as the raw
experimental data [6]. Comparison with the detector
thermal noise permits these data to be converted to force
readings. Details of the IU-2002 calibration are given in
Refs. [25,26] and of the IU-2012 calibration in Refs. [6,27].
Following Ref. [6], the theoretical LV force for the IU

experiments is evaluated by Monte Carlo integration of the
z component of the force from the potential (1), incorpo-
rating the test-mass curvatures and mode shapes. The
results can be expressed as a Fourier series in the local
sidereal time T⊕ analogous to Eq. (8). The Fourier force

amplitudes are linear combinations of the kNð8Þjm , weighted
by a corresponding transfer coefficient Λj as in Eq. (9). The
numerical values of the Λj for the IU-2002 and IU-2012
experiments are shown in the fourth and fifth columns of
Table II. Systematic errors associated with the positions and
dimensions of the test masses are established by calculating
the mean and standard deviation of a population of Fourier
amplitudes generated with a spread of geometries based on
the metrology errors [6,25]. Many Λj values in all columns
of Table II are dominated by the error. For the IU experi-
ments, the error is particularly sensitive to the longitudinal
position of the detector mass relative to the source mass.
For the HUST-2015 experiment, extraction of the LV

signal from the data proceeds as described in Ref. [8]. The
data rate is much faster than the attractor modulation
frequency, so data are partitioned into bins corresponding
to the modulation period ΔT ¼ 3846.12 s. The LV torque
signals τLV;nðT⊕Þwith n ¼ 8 and 16 are extracted by fitting
the measured torque τzðT⊕Þ in each bin to

τzðT⊕Þ ¼
X

n¼8;16

τLV;nðT⊕Þ cosð2πnf0T⊕ þ φnÞ; ð10Þ

where φn is set by operation of the experiment. The values
of τLV;nðT⊕Þ are taken to be approximately constant in each
bin, since ω⊕ΔT ≪ 1 and any sidereal variation within
each bin is negligible. Data for the torque τLV;8 are plotted
in the upper panel of Fig. 1 as a function of time. Each point
shows the mean measurement in the modulation period
without errors, which are dominated by statistical fluctua-
tions. The Fourier spectrum for these data is displayed in
the lower panel of Fig. 1. The corresponding plots for the
torque τLV;16 appear in Fig. 1 of Ref. [8].
The Fourier amplitudes Cm, Sm are obtained by a

subsequent fit of the τLV;nðTÞ data to Eq. (8), including a
small correction for averaging over ΔT [8]. The results are
shown in the second and third columns of Table III.
A residual Newton torque is subtracted from the

TABLE II. Transfer coefficients Λj for HUST-2015, IU-2002,
and IU-2012 experiments. Errors are 1σ.

HUST 8f0 HUST 16f0 IU-2012 IU-2002
Coefficient (�0.01, 10−4 Nm=m4) (10−4 N=m4)

Λ1 −0.08 −0.11 92� 269 8� 15
Λ2 0.03 0.14 75� 160 41� 10
Λ3 −0.22 0.35 −92� 289 −5� 19
Λ4 0.00 0.00 26� 264 21� 24
Λ5 0.22 0.13 −75� 180 16� 24
Λ6 0.00 0.00 −191� 239 −7� 13
Λ7 −0.11 −0.10 −290� 275 4� 25
Λ8 0.00 0.00 13� 168 2� 19
Λ9 0.31 0.10 642� 512 −48� 28
Λ10 0.00 0.00 −92� 139 −36� 14
Λ11 0.09 −0.02 57� 255 11� 23
Λ12 0.00 0.00 −70� 256 6� 13
Λ13 −0.12 0.38 −35� 301 24� 21
Λ14 0.00 0.00 132� 203 15� 12
Λ15 0.10 0.30 178� 319 14� 21
Λ16 0.00 0.00 70� 149 27� 20
Λ17 −0.20 0.30 237� 352 6� 14
Λ18 0.00 0.00 −145� 269 3� 22
Λ19 0.31 −0.13 −496� 332 −12� 15
Λ20 0.00 0.00 52� 302 −18� 38
Λ21 0.21 −0.02 −127� 140 −5� 17
Λ22 0.00 0.00 307� 451 52� 11

FIG. 1. HUST-2015 data at 8f0 and Fourier transform.
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time-independent amplitude C0. The error on this amplitude
is dominated by the uncertainties on the calculated Newton
torque [19], which in turn arise primarily from uncertainties
in the dimensions and positions of the test masses. The
Newton torque and its error are considerably larger for the
16f0 component, which is less well nulled by the compen-
sation scheme. The sidereal-harmonic amplitudes inTable III
are dominated by the statistical uncertainty, which is at the
same level for each harmonic.
For the IU-2002 and IU-2012 experiments, the acquired

force data are described in detail in Ref. [6]. The corre-
sponding Fourier amplitudes up to the sixth harmonic of the
sidereal frequency ω⊕ are listed in Table III. Uncertainties
are dominated by the statistical errors in the data. Errors
also include contributions from the calibration [6,25] and
from corrections due to discontinuities in the time-series
data [6], the latter of which include here contributions
from the 5ω⊕ and 6ω⊕ terms and hence display slight
differences relative to the amplitudes reported in Ref. [8].
Note that a few modes at 2ω⊕ and 3ω⊕ seem to reveal
potential resolved signals, but these subsequently become
swamped by geometrical uncertainties of the transfer
coefficients during the analysis and hence yield final
measurements of kNð8Þjm consistent with zero.
With the results in Table III in hand, the joint analysis

proceeds as described in Refs. [6] and [8]. A global
probability distribution Pð f̃ jkÞ is formed using the 52
Fourier amplitudes f̃i in Table III and their errors. Each
measured amplitude is assigned a Gaussian distribution pi

that is a function of the 22 independent kNð8Þjm and has mean
μi and standard deviation σi. The product of the individual
pi defines the global distribution,

Pð f̃ jkÞ ¼ P0 exp

�
−
X52
i¼1

ðf̃i − μiÞ2
2σ2i

�
; ð11Þ

where P0 is an arbitrary normalization. The predicted signal
μi for the ith amplitude is given by the appropriate Fourier

component for the HUST or IU experiments, with the
function αj replaced by the associated integrated transfer
coefficient Λj in Table II. The variance σ2i incorporates all
statistical and calibration errors. Following standard pro-
cedure [28] to account for the metrology errors on the μi,
the global distribution is replaced with the expression

P0ð f̃ jkÞ ¼
Z

Pð f̃ jk; xÞπðxÞdx; ð12Þ

where x represents the set of geometry variables and πðxÞ is
their prior probability density function. For simplicity, for
each geometry parameter x, πðxÞ is taken to be a uniform
distribution centered at the measured x with a width of
twice the error Δx, so that the integral (12) reduces to an
average over x. Independent measurements of each com-

ponent kNð8Þjm are then obtained by integrating P0ð f̃ jkÞ over
all other components. The result is a distribution for the
chosen component with a single mean and standard

TABLE III. Fourier amplitudes (2σ, units 10−16 Nm for HUST
and 10−16 N for IU).

Mode HUST-8f0 HUST-16f0 IU-2012 IU-2002

C0 0.08� 0.10 −0.20� 2.40 0� 136 2� 411
C2 0.00� 0.08 −0.01� 0.08 47� 166 −53� 556
S2 −0.06� 0.08 −0.08� 0.08 −192� 187 −51� 176
C4 0.00� 0.08 0.04� 0.08 −42� 156 25� 448
S4 0.01� 0.08 −0.03� 0.08 −58� 192 83� 237
C6 0.04� 0.08 −0.04� 0.08 −41� 179 61� 306
S6 0.00� 0.08 0.02� 0.08 91� 146 52� 241
C1 −0.03� 0.08 0.00� 0.08 −108� 193 30� 130
S1 0.03� 0.08 0.00� 0.08 3� 161 −192� 449
C3 0.00� 0.08 0.01� 0.08 −173� 145 215� 180
S3 0.03� 0.08 −0.06� 0.08 223� 207 −56� 390
C5 0.02� 0.08 −0.03� 0.08 142� 181 −98� 201
S5 −0.08� 0.08 0.05� 0.08 132� 165 −190� 290

TABLE IV. Independent coefficient values (2σ, units 10−13 m4)
obtained by combining HUST and IU data.

Coefficient Measurement

kNð8Þ40
−6.4� 50.9

RekNð8Þ41
1.7� 5.5

ImkNð8Þ41
0.9� 5.8

RekNð8Þ42
0.0� 3.9

ImkNð8Þ42
0.9� 4.0

RekNð8Þ43
4.3� 7.3

ImkNð8Þ43
2.4� 7.3

RekNð8Þ44
−2.8� 14.5

ImkNð8Þ44
−2.9� 14.4

kNð8Þ60
5.1� 100.9

RekNð8Þ61
−2.4� 5.9

ImkNð8Þ61
−1.2� 6.4

RekNð8Þ62
1.9� 5.5

ImkNð8Þ62
1.7� 6.2

RekNð8Þ63
4.7� 6.8

ImkNð8Þ63
0.6� 7.9

RekNð8Þ64
−0.9� 6.8

ImkNð8Þ64
−0.9� 6.7

RekNð8Þ65
1.2� 7.8

ImkNð8Þ65
3.7� 7.1

RekNð8Þ66
5.7� 14.4

ImkNð8Þ66
0.9� 14.2
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deviation, which constitute the estimated component meas-
urement and its error.
Table IV displays the final results obtained from this joint

HUST-IU analysis for the 22 independent coefficients kNð8Þjm
for LV in the Sun-centered frame. The results are consistent
with no LV force varying according to the inverse sixth
power, at the level of 10−12 m4. These measurements are the
first of their kind, and they set a benchmark excluding short-
range LV gravitational forces down to a distance scale of
below amillimeter. They thereby enhance the scope of recent
constraints on LV operators in pure gravity with d ¼ 4
[9,29–47] d ¼ 5 [48,49], d ¼ 6 [6–8,11,39,42,48], d ¼ 7
[48], d ¼ 8 [39], and d ¼ 10 [50].
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