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We study a particle immersed in a heat bath, in the presence of an external force which decays at least as
rapidly as 1=x, e.g., a particle interacting with a surface through a Lennard-Jones or a logarithmic potential.
As time increases, our system approaches a non-normalizable Boltzmann state. We study observables, such
as the energy, which are integrable with respect to this asymptotic thermal state, calculating both time and
ensemble averages. We derive a useful canonical-like ensemble which is defined out of equilibrium, using a
maximum entropy principle, where the constraints are normalization, finite averaged energy, and a mean-
squared displacement which increases linearly with time. Our work merges infinite-ergodic theory with
Boltzmann-Gibbs statistics, thus extending the scope of the latter while shedding new light on the concept
of ergodicity.
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The equilibrium state of a particle confined in a binding
potential VðxÞ, coupled to a heat bath of temperature T, is
given by the Boltzmann-Gibbs distribution limt→∞PtðxÞ¼
ð1=ZÞexp½−VðxÞ=kBT�. Here, Z¼

R∞
−∞exp½−VðxÞ=kBT�dx

is the normalizing partition function, kB is the Boltzmann
constant. Thus while the particle’s trajectory xðtÞ is erratic
due to the interaction with its surroundings, the long-time
limit of the probability density PtðxÞ can be predicted.
When this applies, the sample mean of an observable
OðxÞ is given by the ensemble average hOðxÞi ¼R∞
−∞ OðxÞP∞ðxÞdx. From the trajectory xðtÞ of a single
particle, one can calculate the time average O½xðtÞ� ¼
ð1=tÞ R t

0 O½xðt0Þ�dt0. According to the ergodic hypothesis,

as t → ∞, O½xðtÞ�=hOðxÞi → 1. This fundamental result
allows us to estimate the statistical behavior of the single
particle from the properties of the ensemble and vice versa.
But what can we say about the thermodynamic and

ergodic properties of the system when the potential is such
that the Boltzmann distribution is non-normalizable? There
are many physically important examples of this, among
them a particle in a Coulomb field (the “hydrogen atom”
[1]), a particle in the presence of a long charged rod or
polymer, which can be a model of a stretched DNA, giving
rise to a logarithmic potential (see, e.g., Ref. [2]), andmodels
of glassy dynamics when the density of states grows
exponentially, namely, Bouchaud’s trap model [3] (see also
Refs. [4,5]). Non-normalizable asymptotic states have been
previously discussed in the physics literature, e.g., in the
context of Lévywalks and laser-cooled atoms [6–9], weakly
chaotic maps [10,11], and nonlinear oscillators [12]. In this
Letter we advance a new thermodynamic approach for a
wide class of systems out of equilibrium, where a non-
normalized state takes a central role, resembling that of the

Boltzmann distribution in standard thermodynamics. We
explain how this state can be realized in the laboratory and
what insights it provides.
Imagine the three-dimensional motion of a particle in a

viscous fluid at room temperature, which constitutes a
thermal bath, floating above a flat surface. Here, x > 0

is the distance between the particle and the surface.
The surface-single molecule potential is VðxÞ, where
VðxÞ → 0, as x → ∞. The motion parallel to the y-z plane
is purely diffusive. The timescale of the experiment is such
that the fluid bath can be assumed infinite in all dimensions.
Such a motion, which is a model for molecules “hopping”
from the membrane of a living cell [13–15], recently
became measurable using novel detection techniques
such as Refs. [16–19] (for a schematic description see
the Supplemental Material [20]). Since the force field
is zero at large distances from the surface, clearly here
Z ¼ R∞

0 exp½−VðxÞ=kBT�dx is divergent, regardless of the
temperature. Can one still infer the potential field from the
Boltzmann factor exp½−VðxÞ=kBT� when the equilibrium
state is non-normalizable? How do we formulate the
maximum entropy principle in this case? Below, we show
that for observables integrable with respect to it, both the
time averages and the ensemble averages are obtained
directly from the non-normalizable Boltzmann state. This
is reminiscent of a generalized form of ergodicity, previously
discovered in the context of deterministic maps, known as
infinite-ergodic theory [21–23] (see also Refs. [10,12,24]).
In addition, our new non-normalizable approach allows us to
study other thermodynamical properties of the system, such
as the entropy-energy relation, and generalize the virial
theorem. Thus the non-normalized state describes a very
wide range of physical observables.
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Model.—We model the dynamics of the diffusing par-
ticles using the unidimensional Langevin equation, in the
overdamped approximation

_xðtÞ ¼ −V 0ðxÞ=γ þ
ffiffiffiffiffiffiffi
2D

p
ΓðtÞ: ð1Þ

Here γ > 0 is the friction constant, and according to the
Einstein relation, D ¼ kBT=γ is the diffusion coefficient.
The fluctuations quantified by the second term on the right-
hand side are treated as Gaussian white noise with zero
mean and hΓðtÞΓðt0Þi ¼ δðt − t0Þ. The spatial spreading of
the diffusing particle packet is described by the Fokker-
Planck equation [25]

∂PtðxÞ
∂t ¼ D

� ∂2

∂x2 þ
∂
∂x

V 0ðxÞ
kBT

�
PtðxÞ: ð2Þ

We begin by considering the large class of potential fields
which are asymptotically flat at large x. This means that,
far from the surface, the force is negligibly small. As a
test example, we treat in our simulations the case of a
particle lightly confined by the Lennard-Jones (LJ)-type
potential

VLJðxÞ ¼
�∞; x ≤ 0

V0ða12=x12 − b6=x6Þ; x > 0;
ð3Þ

where a, b, V0 > 0. This potential is plotted in the inset
of Fig. 1. Potentials of this type are weak in the sense
that at any finite time the system has a non-negligible
population of particles that migrate to increasingly large
x, where the attractive force derived from them does not
compensate for the thermal fluctuations. As a result, the
density in the vicinity of the potential minimum decays
in time.
Non-normalizable Boltzmann state.—We now use a

scaling ansatz to solve the time-dependent Fokker-
Planck equation, Eq. (2), for a one-sided potential VðxÞ,
such that Vð∞Þ ¼ 0, Vð0Þ ¼ ∞. At long times and finite x,
a family of solutions to Eq. (2) (up to leading order) is
PtðxÞ ∝ t−α exp½−VðxÞ=kBT�, where α > 0. This is, how-
ever non-normalizable; hence it cannot be the full form of
the probability density. At finite times, this solution is valid
only for x=

ffiffiffiffiffiffiffiffi
4Dt

p
≪ 1. Since VðxÞ is negligibly small at

large x, PtðxÞ expands diffusively at the tails. Hence, for
x ≫ 1, PtðxÞ ≈ t−1=2 exp½−x2=ð4DtÞ�= ffiffiffiffiffiffiffi

πD
p

. Matching the
two limits of PtðxÞ, we obtain the uniform approximation

PtðxÞ ≈
1ffiffiffiffiffiffiffiffi
πDt

p e−VðxÞ=kBT−x2=ð4DtÞ; ð4Þ

so α ¼ 1=2 in this case. For a finite t, the Gaussian fall-off
ensures the normalizability of the probability density,
although the normalization of Eq. (4) is only approximately
unity in the long-time limit. As t→∞, exp½−x2=ð4DtÞ�→1,

and the asymptotic shape of the probability density is given
by the non-normalizable Boltzmann state

limt→∞ZtPtðxÞ ¼ e−VðxÞ=kBT; where Zt ¼
ffiffiffiffiffiffiffiffi
πDt

p
: ð5Þ

Importantly, this solution is independent of the shape of the
(assumed narrow) initial distribution [26]. This also holds
for any asymptotically flat potential, regardless of its
particular shape at finite x [20]. Equation (5) can also be
derived via an eigenfunction expansion of Eq. (2) [27].
Equation (5) shows that the spatial Boltzmann factor is
reached in the long time limit, even though the system is not
in an equilibrium state. Figure 1 shows the agreement
between the asymptotic limit function of PtðxÞ, obtained
from simulation results [28], and Eq. (5), corresponding to
the LJ potential, Eq. (3).
Ensemble-averaged observables.—Consider the ensem-

ble-averaged observable hOðxÞit ¼
R∞
0 OðxÞPtðxÞdx, at

time t. Using Eq. (4), the same argument that yielded
Eq. (5) now implies that at long times

hOðxÞit ∼
1

Zt

Z
∞

0

OðxÞe−VðxÞ=kBTdx: ð6Þ

Equation (6) means that, similar to the case of a strongly
confining field, where Z is time independent, the ensemble
average is obtained by integrating with respect to the (non-
normalized) Boltzmann factor, provided that the integral
exists. One example of such an observable is the potential
energy of the particles; Ep ¼ VðxÞ. Since it is zero at large
x, when applied in Eq. (6), VðxÞ cures the nonintegrability
of the Boltzmann factor.
Another physically important integrable observable is

the indicator function; Θ½xa<xðt0Þ<xb�≡1 when xðt0Þ ∈
½xa; xb�, and zero otherwise. Here, the ensemble-average
hΘðxa ≤ x ≤ xbÞit ¼

R
xb
xa

PtðxÞdx is the probability of find-
ing a particle between xa and xb at time t. At long times,
this is asymptotically equal to ∼ð1=ZtÞ

R
xb
xa

e−VðxÞ=kBTdx,
which decays in time as t−1=2 via Zt, reflecting the

FIG. 1. The scaled time-dependent particle density ZtPtðxÞ,
where Zt ¼

ffiffiffiffiffiffiffiffi
πDt

p
, obtained from simulations corresponding to

the LJ potential, Eq. (3), with a, b ¼ ð2; 1Þ, V0 ¼ 1000 (in
dimensionless units) and D ¼ 0.0436, at times t ¼ 4700, 105,
106 (magenta squares, red diamonds, and green circles, respec-
tively). These results converge nicely to the non-normalizable
Boltzmann state, Eq. (5) (black line). The inset shows the
potential. kBT was set to be 1=4th of the maximal potential depth.
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diffusion of particles out to infinity. Note that the behavior
of nonintegrable observables such as the mean-squared
displacement (MSD) hx2it ∼ 2Dt, is similar to Brownian
motion, since such observables are determined by the
Gaussian tails of the probability density.
Time-averaged observables.—When the standard

Boltzmann-Gibbs framework does not apply, time averages
are random even in the long-time limit. Herewewill provide
their distributional limiting behavior, inspired by infinite-
ergodic theory. We start with the ensemble-time average,
defined as follows: hO½xðtÞ�i ¼ hð1=tÞ R t

0 O½xðt0Þ�dt0i. To
measure this experimentally, one should obtain the time
average from single particle trajectories, and further average
over many paths. Using Eq. (6), for an observable integrable
with respect to the non-normalizable Boltzmann state, after
replacing the order of the ensemble- and the time-averaging
procedures and neglecting short-time effects, we obtain

hO½xðtÞ�i ∼ 1

t

Z
t

0

hOðxÞit0dt0 ¼ 2hOðxÞit: ð7Þ

Thus the value obtained for the average quantity depends on
the method of measurement, and even though at long times
the ratio hO½xðtÞ�i=hOðxÞit approaches a constant, it is twice
the value expected from ordinary statistical mechanics. This
doubling effect is the result of the integration over the time
dependent 1=Zt ∝ t−1=2. In Fig. 2, we show that as t → ∞,
hVLJ½xðtÞ�i=hVLJðxÞit → 2, where the time average was
obtained from simulations of particles in the LJ potential
[28], and the ensemble averagewas calculated using Eq. (6).
Note that, for a nonintegrable observable such as the MSD
(see also Refs. [24,29]), we use the uniform approximation

Eq. (4), which yields hxðtÞ2i ≈Dt, which is again similar to
Brownian motion [30].
Entropy extremum.—To create a framework for the

above non-normalizable Boltzmann statistics, we now
formulate a maximum entropy principle, in the spirit
of thermodynamics, with the additional constraint that

hx2it ∼ 2Dt, in the long-time limit. The functional to be
maximized includes four terms,

S½PtðxÞ� ¼ −kB
Z

∞

0

PtðxÞ ln½PtðxÞ�dx

− kBρ

�Z
∞

0

PtðxÞdx − 1

�

− kBβ

�Z
∞

0

VðxÞPtðxÞdx − hEpi
�

− kBζ

�Z
∞

0

x2PtðxÞdx − 2Dt

�
: ð8Þ

The first term is the Gibbs entropy, and ρ, β and ζ are
Lagrange multipliers associated with the normalization,
average energy, and MSD, respectively. The constraint on
the MSD means that the central-limit theorem is dominant
at large distances from the surface, where the potential is
vanishing. Taking the functional derivative, we obtain the
uniform approximation, Eq. (4) [20]. The entropy, obtained
from the uniform approximation, Eq. (4), reads

SðtÞ ¼ kB ln ðπDtÞ=2þ hEpi=T þ kBhx2it=4Dt: ð9Þ

This relation is demonstrated by comparing simulation
results versus theory in Fig. 3. Importantly, it shows that,
for a fixed observation time; 1=T ¼ ð∂S=hEpiÞt, in agree-
ment with standard thermodynamics. As expected, in the
very long time limit entropy increases logarithmically in
time, since the number of states is infinite and Zt is time
dependent.
Virial theorem.—As seen by the maximum entropy

principle, the toolbox of thermodynamics can be extended
to non-normalizable Boltzmann-Gibbs statistics. To further
demonstrate this, we consider the virial theorem, which
addresses the mean of the observable xFðxÞ [where FðxÞ ¼
−V 0ðxÞ]. Strongly binding potentials, treated with standard
thermodynamics, yield hxFðxÞi ¼ −kBT. In our case,
since it is an integrable observable, for asymptotically flat
potentials,

FIG. 2. The ratio between the ensemble-time-averaged poten-
tial energy hĒpi ¼ hVLJ½xðtÞ�i, obtained from simulations [28]
with the LJ-type potential, Eq. (3), and the ensemble-mean
hEpit ¼ hVLJðxÞit, obtained from Eqs. (3), (5), (6) (green,
circles). The parameters of the potential and the temperature
are the same as in Fig. 1. The asymptotic limit (blue line) is given
by Eq. (7). The same effect is found also for other integrable
observables, e.g., Θð·Þ.

FIG. 3. The Gibbs entropy, obtained from simulation results,
with a LJ potential as in Fig. 1, versus time (green circles). The
theoretical curve (red dashed line) corresponds to Eq. (9), where
the averaged potential energy is obtained from Eq. (6), and the
MSD is obtained from the uniform approximation, Eq. (4). At the
long t limit, SðtÞ ∼ ðkB=2Þ lnðπeDtÞ (blue line).

PHYSICAL REVIEW LETTERS 122, 010601 (2019)

010601-3



hxFðxÞit≈
2B2

Zt
kBT; B2¼

1

2

Z
∞

0

ð1−e−VðxÞ=kBTÞdx; ð10Þ

at long times, where B2 is the second virial
coefficient [31]. This result is obtained via hxFðxÞi ≈
ðkBT=ZtÞ

R∞
0 x∂x fexp½−VðxÞ=kBT� − 1gdx, noting that

fexp½−VðxÞ=kBT� − 1g → 0 when x → ∞.
Since the non-normalizable Boltzmann state can be used

to obtain information on physically important observables
such as energy, entropy, the virial theorem, and occupation
times, we now turn to the discussion on the distribution of
the time averages, which will replace standard ergodicity.
Distribution of time averages.—Here we study the

distribution of the random time average O½xðtÞ�, for an
integrable observable. Because of the attractive potential,
the unidimensional processes we are studying are recurrent;
however they are characterized by two distinct timescales.
Consider first, for simplicity, the case of the observable
Θ½xa ≤ xðtÞ ≤ xb�. The time that the particle spends inside
the finite region ½xa; xb� at each visit has a finite typical value
htini. However once the particle experiences a large thermal
fluctuation, taking it to large x, the probability distribution of
its first-return time to this region is fat tailed; fðtretÞ ∼ t−1−αret
[32,33]. If the potential is asymptotically flat, α ¼ 1=2 and
htreti diverges. This blowup of the typical return time is the
physical reason why standard ergodic theory is not appli-
cable here, since for a time-averaged observable to converge
to its ensemble mean the measurement time must be long
compared to the microscopical scale.
Therefore, the random occupation time τ ¼ R

t
0 Θ½xa ≤

xðt0Þ ≤ xb�dt0, which is a functional of the particle’s
trajectory xðt0Þ is proportional to htinin, where n is the
random number of xb crossings into the region ½xa; xb�,
until time t. Since τ is proportional to n, we have τ=hτi →
n=hni ¼ ξ. The probability density function of this ratio,
MαðξÞ, is the well-known Mittag-Leffler distribution,

MαðξÞ ¼
Γ1=αð1þ αÞ
αξ1þ1=α Lα

�
Γ1=αð1þ αÞ

ξ1=α

�
; ð11Þ

obtained from renewal theory for a process with power-law
sojourn times [21,34]. Here Γð·Þ is the Gamma function and
Lα½·� is the one-sided Lévy density [35]. The logic behind
this result is that the crossing times of xb are not correlated,
and that the time spent in ð0; xaÞ is statistically much
shorter than the time in x > xb. The above arguments,
according to the Aaronson-Darling-Kac theorem [21],
apply to any observable integrable with respect to an
infinite measure of a system [22], and by extension also
to our non-normalizable Boltzmann state, so the distribu-
tion PðξÞ, where ξ ¼ O½xðtÞ�=hO½xðtÞ�i, is equal toMαðξÞ,
Eq. (11), and α is related to the first return-time statistics.
The probability densities of the indicator function and the
time-averaged potential energy, in the presence of the LJ
potential, are shown in Fig. 4, along with the Mittag-Leffler
distribution. A sample of the time series of Ep is presented

in the inset of Fig. 4, showing rare “renewal” events, at
which the value of the energy is non-negligible (namely, its
absolute value is above an arbitrary threshold ϵ ≪ 1). This
provides the intuitive explanation for why this observable
can be treated in analogy with the occupation time.
Our theory extends also to the case of logarithmic

potentials, e.g., Refs. [36–39]. This case provides an
additional important insight into the distribution of
the return times, and the connection between infinite-
ergodic theory and Boltzmann-Gibbs statistics. As shown
in Ref. [27], for potentials where VðxÞ ∼ V0 logðx=l0Þ
at large x; limt→∞ZtPtðxÞ ¼ e−VðxÞ=kBT , where Zt ¼
½Γð1 − αÞl0=2�ð4Dt=l20Þ1−α, and α ¼ 1=2þ V0=ð2kBTÞ.
Here, the asymptotic thermal state is non-normalizable at
sufficiently high temperatures, when 0 < V0=kBT < 1,
namely, 1=2 < α < 1. To derive the non-normalized
Boltzmann state for logarithmic potentials from entropy
maximization, one should use the MSD obtained in
Ref. [27]; hx2it ∼ 4Dð1 − αÞt, which also yields the
time-dependent entropy-energy relation in this case. This
will be published elsewhere. For integrable observables,
using a similar derivation as for asymptotically flat
potentials, we now find that Eq. (6) is still valid, and
hO½xðtÞ�i=hOðxÞit → 1=α, when t → ∞. When α → 1, the
Boltzmann factor becomes normalizable, and infinite-ergo-
dic theory reduces to the standard ergodic hypothesis,
where Zt is replaced by the normalizing partition function
Z. In the Supplemental Material [20] we test our theory,
showing its predictions perfectly match numerical simu-
lations. With a logarithmic potential, α in Eq. (11) can be
tuned in the range 1=2 ≤ α < 1, e.g., by adjusting the
temperature, to obtain a smooth transition of MαðξÞ from
half a Gaussian corresponding to T → ∞, to ergodic

FIG. 4. The probability density PðξÞ, where ξ ¼ Ō=hŌi,
approaches in the long time limit to the Mittag-Leffler distribu-
tion, Eq. (11). The theory is MαðξÞ, with α ¼ 0.5, which
is equivalent to half a Gaussian (dashed blue line), α ¼ 0.64
(red line), and α ¼ 0.75 (green dash-dot line). The ob-
servables obtained from the LJ potential are potential energy
ξ¼VLJ½xðtÞ�=hVLJ½xðtÞ�i (green squares), and the indicator func-
tion (defined as unity for x ∈ ½0; 5� [28]) ξ ¼ Θ̄=hΘ̄i (red circles).
Simulation results for the indicator function, with a log potential
and α ¼ 0.64, 0.75 (x ∈ ½0; 3.2� and [0, 8], respectively), appear
in (blue diamonds) and (magenta stars), respectively [28]. Inset:
A time series of the potential energy of a single particle in Ep ¼
VLJ½xðtÞ� of a single particle, versus time, demonstrating short
periods at which the particle samples the region of non-negligible
potential, with long sojourn times in between.
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behavior at T → V0 (as mentioned, beyond this value, the
Boltzmann factor is normalizable). This is demonstrated in
Fig. 4. Note that with a logarithmic potential, in the low-
temperature regime, the properly timescaled power-law
tails of the normalized density PtðxÞ are described by an
infinite-covariant density [6,27]; however this does not lead
to infinite-ergodic theory.
Generality.—Infinite-invariant measures can be found in

any dimension, as is easy to verify for free d-dimensional
Brownian motion. This property is preserved also in the
presence of an asymptotically weak, or logarithmic poten-
tial, similarly to the unidimensional case. We will discuss
this at length in a future publication (see Supplemental
Material [20]). Clearly, infinite-ergodic theory, and the
Mittag-Leffler distribution of time-averaged observables,
require the process to be recurrent. When the first-passage
time distribution follows a power lawwith a divergingmean,
infinite-ergodic theory applies. In one dimension, when the
potential field is unstable, e.g., VðxÞ ∝ x3, the process is
nonrecurrent, and a different theory emerges [4,5].
Extending infinite-ergodic theory to the underdamped

generalized Langevin equation, which is non-Markovian, is
a worthy goal. This process is also recurrent, and the
fluctuation-dissipation theorem holds, so we expect the
main properties of our theory to remain. Furthermore, the
single-particle analysis used in this Letter reflects current
day single-molecule experiments; however our work can be
elevated to a many-body theory, which could be related to
the process described in Ref. [40]. There, the potential
energy of the single particle is replaced by the many-body
potential, but the non-normalizable Boltzmann factor
remains. Infinite-ergodic theory can also be extended to
many other systems, e.g., Langevin equations with a
multiplicative noise [41], and diffusion on fractals.
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