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We consider a quantum communication task between two users Alice and Bob, in which Alice and Bob
exchange their respective quantum information by means of local operations and classical communication
assisted by shared entanglement. Here, we assume that Alice and Bob may have quantum side information,
not transferred, and classical communication is free. In this work, we derive general upper and lower
bounds for the least amount of entanglement which is necessary to perfectly perform this task, called the
state exchange with quantum side information. Moreover, we show that the optimal entanglement cost can
be negative when Alice and Bob make use of their quantum side information. We finally provide conditions
on the initial state for the state exchange with quantum side information which give the exact optimal
entanglement cost.
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Introduction.—In quantum information theory, one of
the most traditional research topics has been source coding
problems of transmitting Alice’s quantum information to
Bob under various situations, with paradigmatic examples
including Schumacher compression [1] and quantum
teleportation [2]. A decade ago, Oppenheim and Winter
devised a new type of a quantum communication task
named state exchange [3], in which Alice and Bob
exchange their quantum information with each other by
means of local operations and classical communication
(LOCC) and shared entanglement, and they studied the
least amount of entanglement consumed in the task when
free classical communication is allowed.
In the original state exchange task, it is assumed that both

Alice and Bob do not have any quantum side information
(QSI), which is not transferred during the protocol. On the
other hand, most quantum communication tasks, including
state merging [4,5] and state redistribution [6,7], begin with
the assumption that either Alice or Bob has QSI. For
example, in the state merging task, Bob can make use of his
QSI for merging Alice’s information to himself, and the
minimum amount of entanglement needed for merging
turns out to be exactly given by the quantum conditional
entropy [8] conditioned on Bob’s QSI.
In this work we generalize in the state exchange to an

exchanging task allowing Alice’s and Bob’s QSI, which is
called the state exchange with quantum side information.
We consider three parties, Alice, Bob, and a referee (R),
sharing a pure initial state jψi≡ jψiACABCBR as depicted in
Fig. 1. The aim of Alice and Bob is to exchange their

quantum information CA and CB, while the referee does
nothing. To achieve their aim, Alice and Bob make use of
their QSI A and B, and they have additional systems Ein

A,
Eout
A and Ein

B , E
out
B for the use of entanglement resources.

Our main question can be formulated as follows: Does
there exist a crucial difference in optimal strategies between
the tasks of state exchange with and without QSI?
To answer this question we formally define the state

exchange with QSI and its optimal entanglement cost in the
asymptotic scenario, and then derive an upper bound for the
optimal entanglement cost by conceiving a two-step strat-
egy based on the idea mentioned in Ref. [3]. We show that
in general this strategy does not provide the optimal
entanglement cost of the state exchange with QSI.
However, for a specific initial state of the state exchange
with QSI, the upper bound shows that the optimal entan-
glement cost for the state exchange with QSI can be
negative, meaning that entanglement is in fact gained
rather than consumed in the protocol. This result is quite
remarkable since the optimal entanglement cost for the
state exchange without QSI cannot be negative [3]. More
importantly, this implies that the use of Alice’s and Bob’s
QSI can significantly reduce the optimal entanglement cost
of the exchanging task.
We furthermore consider an idealized situation in which

the referee plays a more active role and can help Alice and
Bob to exchange their information [3]. By virtue of the
referee’s assistance, it is possible for Alice and Bob to
more efficiently perform the state exchange with QSI, and
this provides us with converse bounds on the optimal
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entanglement cost, which are lower bounds for any
achievable entanglement rate. As an application of our
bounds, we present conditions on the initial state for the
state exchange with QSI such that the exact optimal
entanglement cost can be obtained.
State exchange with quantum side information.—In the

task of state exchange E with QSI as described in Fig. 1,
the global initial state ψ i and the global final state ψf are
given by

ψ i ¼ ψ ⊗ ΦEin
AE

in
B

and ψf ¼ ψ 0 ⊗ ΦEout
A Eout

B
;

where ψ ¼ jψihψ j, ΦEin
AE

in
B
and ΦEout

A Eout
B
are pure maximally

entangled states with Schmidt rank einðEÞ and eoutðEÞ,
respectively, ψ 0 ¼ ð1ABR ⊗ 1CA→C0

A
⊗ 1CB→C0

B
ÞðψÞ, and

C0
B (C0

A) is Alice’s system (Bob’s system) with dimC0
B ¼

dimCB (dimC0
A ¼ dimCA). Then a joint operation

E∶ ACAEin
A ⊗ BCBEin

B → AC0
BE

out
A ⊗ BC0

AE
out
B

is called the state exchange with quantum side information
of jψiwith error ϵ, if it is performed by LOCC, and satisfies

kðE ⊗ 1RÞðψ iÞ − ψfk1 ≤ ϵ;

where k · k1 is the trace norm [8].
Let us now consider n independent and identically

distributed copies of jψi, say, jψi⊗n. If En indicates a
state exchange with QSI of jψi⊗n with error ϵn, then the
resource rate ½log einðEnÞ − log eoutðEnÞ�=n is called the
entanglement rate of the protocol. If there is a sequence
fEngn∈N of state exchanges En with QSI of jψi⊗n with error
ϵn such that

lim
n→∞

log einðEnÞ − log eoutðEnÞ
n

¼ er; lim
n→∞

ϵn ¼ 0;

then the real number er is called an achievable entangle-
ment rate for the state exchange with QSI of jψi. The
infimum of the achievable entanglement rates defines the
optimal entanglement cost eopt for the considered task.
Note that the optimal entanglement cost only depends on

the reduced state of Alice and Bob, as the referee does not
play any active part in the protocol.
Merge-and-merge strategy.—We first present a merge-

and-merge strategy which is motivated by the merge-and-
send protocol introduced in Ref. [3]. The idea of this
strategy is as follows. Firstly, Alice’s part CA is merged
from Alice to Bob by using BCB as QSI. After finishing
merging CA, Bob’s part CB is merged from Bob to Alice by
using Alice’s QSI A so that Alice’s CA and Bob’s CB are
exchanged. By using the exact formula of the entanglement
cost for merging [6,9,10], we have that the optimal
entanglement costs of merging CA and merging CB are
the quantum conditional entropies HðCAjBCBÞ and
HðCBjAÞ, respectively, so that the total entanglement cost
isHðCBjAÞ þHðCAjBCBÞ, where the quantum conditional
entropy HðXjYÞρ of a state ρXY is defined by
HðXYÞρ −HðYÞρ, with HðXÞ the von Neumann entropy
[8] of a state ρX.
From the merge-and-merge strategy, we obtain the

following upper bound for the optimal entanglement cost
of the state exchange with QSI.
Theorem 1.—The optimal entanglement cost eopt for the

state exchange with QSI of jψi is upper bounded by

eopt ≤ uðψÞ ¼ minfu1ðψÞ; u2ðψÞg;

where u1ðψÞ ¼ HðCBjAÞψ þHðCAjBCBÞψ and u2ðψÞ ¼
HðCAjBÞψ þHðCBjACAÞψ .
Note that u2ðψÞ in Theorem 1 can be obtained by firstly

merging Bob’s part CB to Alice. We further refer the reader
to Supplemental Material [11] for the rigorous proof of
Theorem 1, which fulfills the definition of achievability.
Optimal strategy?—Since the merge-and-merge strategy

is simple and intuitive, one may guess that the strategy is
optimal for any initial state of the exchanging task.
However, the following example shows that there can be
a more effective strategy than the merge-and-merge one.
Let us consider a specific form of the initial state,

jψ̃iACABCBR ¼ jϕ̃iAC1
ABC

1
BR1

⊗ jGHZiC2
AC

2
BR2

; ð1Þ

where systems CA ¼ C1
AC

2
A, CB ¼ C1

BC
2
B, R ¼ R1R2, jϕ̃i

is an arbitrary state on the system AC1
ABC

1
BR1, and

jGHZiC2
AC

2
BR2

¼ 1ffiffiffi
d

p
Xd−1
k¼0

jkkki

is the Greenberger-Horne-Zeilinger state [14] with d ≥ 2.

FIG. 1. Illustration of state exchange protocol E with QSI.
Starting from an initial state jψiACABCBR of Alice, Bob, and a
referee (R), Alice and Bob exchange their parts CA and CB,
exploiting their respective QSI A and B. The ancillary systems Ein

A
and Ein

B represent an initial entanglement consumed for the
exchanging task, while Eout

A and Eout
B indicate entanglement

generated from the task.
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In order to exchange CA and CB in Eq. (1), it suffices for
Alice and Bob to only consider the state exchange with
QSI of jϕ̃i, since the parts C2

A and C2
B of the state jGHZi

are symmetric. Then by applying the merge-and-merge
strategy on jϕ̃i, we obtain a tighter upper bound
minfu1ðϕ̃Þ; u2ðϕ̃Þg for the optimal entanglement cost for
the state jψ̃i in Eq. (1) as follows:

minfu1ðϕ̃Þ; u2ðϕ̃Þg ¼ minfu1ðψ̃Þ; u2ðψ̃Þg − log d: ð2Þ

From the relation between upper bounds in Eq. (2), we
remark that there can be an arbitrarily large gap between
the optimal entanglement cost and the upper bound in
Theorem 1, implying that the upper bound is not optimal in
the general case. This example also shows that there exist
tighter upper bounds for the optimal entanglement cost. On
this account, we argue that the optimal strategy for state
exchange with QSI is generally nontrivial.
Converse bounds.—As in the state exchange without

QSI [3], we can imagine that the referee holds the reference
R, and is ideally allowed to assist Alice and Bob in the
following way, which is here called the R-assisted state
exchange with QSI. The referee first divides their part R
into two parts E and V by using a quantum channelN from
R to V whose complementary channel N c is from R to E
[8]. Next, the referee sends the states ρV ¼ N ðρRÞ and
ρE ¼ N cðρRÞ to Alice and Bob, respectively. Then the
initial state jψi becomes jψiACAVBCBE, where Alice and
Bob hold ACAV and BCBE, respectively. Alice and Bob
now perform the state exchange with QSI of the
state jψiACAVBCBE.
For each n, let ER

n be a state exchange with QSI of jψi⊗n

with error εn, and Ebef
n and Eaft

n be total amounts of
entanglement between Alice and Bob before and after
the state exchange with QSI, respectively. Then they can
be expressed as Ebef

n ¼ nHðACAVÞ þ log einðER
n Þ and

Eaft
n ¼ nHðACBVÞ þ log eoutðER

n Þ. Since the total entangle-
ment between Alice and Bob cannot increase under LOCC
[15], we have Ebef

n ≥ Eaft
n ; that is,

log einðER
n Þ − log eoutðER

n Þ ≥ nHðACBVÞ − nHðACAVÞ:

Let eRopt be the optimal entanglement cost for the R-assisted
state exchange with QSI, then

max
N

½HðACBVÞ −HðACAVÞ� ≤ eRopt:

Since any state exchange with QSI can be considered as an
R-assisted state exchange with QSI (in which the referee
trivially does nothing), it holds that eRopt ≤ eopt. This leads
us to the following theorem.
Theorem 2.—The optimal entanglement cost eopt for the

state exchange with QSI of jψi is lower bounded by

lðψÞ ¼ max
N

½HðACBVÞN ðψÞ −HðACAVÞN ðψÞ� ≤ eopt;

where the maximum is taken over all quantum chan-
nels N ∶R → V.
In general, it is not easy to calculate the converse bound

in Theorem 2, since it involves an optimization over all
quantum channels. However, if the referee sends the
whole part R to either Alice or Bob without dividing R
in Theorem 2, then we obtain the following computable
converse bound:
Corollary 3.—For the state exchange with QSI of jψi,

the optimal entanglement cost eopt satisfies

maxfl1ðψÞ; l2ðψÞg ≤ eopt;

where l1ðψÞ ¼ HðACBÞψ −HðACAÞψ and l2ðψÞ ¼
HðBCAÞψ −HðBCBÞψ .
By using the continuity of the von Neumann entropy

[16,17], we can directly show that l1ðψÞ and l2ðψÞ in
Corollary 3 are lower bounds to the optimal entanglement
cost for the state exchange with QSI of jψi. The proof of
Corollary 3 can be found in Supplemental Material [11].
Large gap between converse bounds.—It is obvious that

the lower bound presented in Corollary 3 is less tight than
the one in Theorem 2. Interestingly, the gap between these
two converse bounds can be arbitrarily large. To this end,
let us consider the initial state

jψ̄iACABCBR ¼ jΦiARA
⊗ jΦiCARCA

⊗ jΦiBRB
⊗ jΦiCBRCB

;

ð3Þ

where the reference system R consists of the four sub-
systems RA, RCA

, RB, and RCB
, and jΦi is a maximally

entangled state on the corresponding bipartite system SRS
with dimS ¼ dimRS for S ¼ A, B, CA, and CB. Then we
can readily see that

l1ðψ̄Þ ¼ HðCBÞψ̄ −HðCAÞψ̄ ¼ −l2ðψ̄Þ:

On the other hand, if a channel N̄ is given by ρR ↦ ρRARCA
,

that is, V ¼ RARCA
, then we obtain

lðψ̄Þ ≥ HðACBVÞN̄ ðψ̄Þ −HðACAVÞN̄ ðψ̄Þ

¼ HðACBRARCA
Þψ̄ −HðACARARCA

Þψ̄
¼ HðCAÞψ̄ þHðCBÞψ̄ ;

which means that the converse bound lðψÞ in Theorem 2
can be arbitrarily larger than maxfl1ðψÞ; l2ðψÞg in
Corollary 3 for the class of initial states in Eq. (3).
Optimal entanglement cost can be negative.—We finally

address the crucial question: Can the optimal entanglement
cost for state exchange with QSI be negative? First of all, let
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us remark that the optimal entanglement cost for state
exchange without QSI of jψiCACBR cannot be negative [3].
If the optimal cost was negative, then Alice and Bob could
generate as much entanglement as they need by repeatedly
exchanging their state. This contradicts the basic require-
ment that the amount of entanglement cannot increase by
LOCC [18].
However, quite remarkably, the optimal entanglement

cost eopt for the state exchange with QSI of jψi can be
negative. This is readily seen since the upper bounds u1 or
u2 in Theorem 1 can be negative. For example, eopt is
negative for the initial state

jψλiACABCBR ¼
ffiffiffi
λ

2

r
j00000i þ

ffiffiffiffiffiffiffiffiffiffi
1 − λ

2

r
j10011i

þ
ffiffiffi
λ

2

r
j01100i þ

ffiffiffiffiffiffiffiffiffiffi
1 − λ

2

r
j01010i; ð4Þ

with λ ≥ 0.65, as seen in Fig. 2. Furthermore, this example
shows that, in the state exchange with QSI, the optimal
entanglement cost can be generally reduced by exploiting
the QSI AB for the exchanging task. This reveals the
prominent role of the QSI for such a quantum communi-
cation primitive.
At this point we remark that the negativity of the optimal

entanglement cost for the state exchange with QSI does not
lead to a contradiction as follows. Let e1stopt be the optimal
entanglement cost for a state exchange with QSI of the
initial state jψi, and let e2ndopt be the optimal entanglement
cost for a state exchange with QSI of the exchanged state
jψ 0i. Then from Corollary 3,

e1stopt ≥ l1ðψÞ and e2ndopt ≥ l1ðψ 0Þ ¼ −l1ðψÞ:

So in this case we have the inequality e1stopt þ e2ndopt ≥ 0. This
shows that the total amount of entanglement generated
from repeated state exchange protocols with QSI does not

repeatedly increase although the entanglement cost can be
negative in an individual instance of the protocol.
Optimal entanglement costs for some special cases.—We

now provide several conditions which allow us to compute
the exact optimal entanglement cost eopt for the state
exchange with QSI of jψi. In fact, the merge-and-merge
strategy is optimal under these conditions.
Corollary 4.—Let eopt be the optimal entanglement cost

of the state exchange with QSI of jψi≡ jψiACABCBR.
(i) The following conditions on jψi give the exact

optimal entanglement costs:

IðR;CAjAÞψ ¼ 0 ⇔ eopt ¼ u1ðψÞ ¼ l1ðψÞ;
IðR;CAjBÞψ ¼ 0 ⇔ eopt ¼ u2ðψÞ ¼ l1ðψÞ;
IðR;CBjAÞψ ¼ 0 ⇔ eopt ¼ u1ðψÞ ¼ l2ðψÞ;
IðR;CBjBÞψ ¼ 0 ⇔ eopt ¼ u2ðψÞ ¼ l2ðψÞ;

where IðX;YjZÞρ indicates the quantum conditional
mutual information (QCMI) of a quantum state ρXYZ, and
u1ðψÞ, u2ðψÞ, l1ðψÞ, and l2ðψÞ are given in Theorem 1 and
Corollary 3.
(ii) There exists a quantum channel N ∶R → V such that

IðCB;VjAÞN ðψÞ ¼ IðCA;EjAVÞN ðψÞ ¼ 0 if and only if
eopt ¼ u1ðψÞ ¼ lðψÞ, where lðψÞ is in Theorem 2.
Similarly, there exists N ∶R → V such that
IðCA;EjBÞN ðψÞ ¼ IðCB;VjBEÞN ðψÞ ¼ 0 if and only
if eopt ¼ u2ðψÞ ¼ lðψÞ.
(iii) Let jψ̂iACABCB

be a pure initial state shared by Alice
and Bob (with no referee), then for the state exchange with
QSI of jψ̂iACABCB

, one has eopt ¼ HðACBÞψ̂ −HðACAÞψ̂ .
By combining the aforementioned upper and lower

bounds, the conditions for the exact optimal cost in
Corollary 4 are directly obtained. We remark that there
are no general implications among the four QCMI con-
ditions in Corollary 4 (i); that is, there exists an initial state
which only satisfies one of these QCMI conditions. We
present related examples in Supplemental Material [11].
Conclusion.—In this work, we have considered the state

exchange with QSI as a fundamental quantum communi-
cation task, and have provided the formal descriptions for
the protocol and its optimal entanglement cost. We have
derived upper and lower bounds to the optimal entangle-
ment cost. From these bounds, we have exactly evaluated
the optimal entanglement cost for several special classes of
states, including all pure bipartite states. Furthermore, we
have shown that the optimal entanglement cost for the state
exchange with QSI can be negative. This is at striking
variance with the state exchange without QSI, whose
entanglement cost is always non-negative.
By replacing classical communication with quantum

communication, we can consider a fully quantum version
of the state exchange with QSI of jψiACABCBR. Similar to the
idea of Theorem 1, this task can be performed by applying

FIG. 2. Upper bounds u1ðψλÞ, u2ðψλÞ and lower bounds l1ðψλÞ,
l2ðψλÞ to the optimal entanglement cost eopt for the specific initial
state jψλi of Eq. (4) with 0 ≤ λ ≤ 1.
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the state redistribution protocol [6,7] twice. For example, if
the part CA is firstly redistributed from Alice to Bob in this
strategy, then its achievable rates Er and Qr for ebits and
qubit channels are given by

Er ¼
1

2
½l1ðψÞ þ l2ðψÞ�;

Qr ¼
1

2
u1ðψÞ þ

1

2
½HðCAjAÞψ þHðCBjBCAÞψ �;

where u1ðψÞ, l1ðψÞ, and l2ðψÞ are in Theorem 1 and
Corollary 3. However, in this case the achievable region of
a resource pair ðEr;QrÞ is completely unknown.
To the best of our knowledge, a protocol exchanging

Alice’s and Bob’s information in a single step has not been
known, and so in this work we have considered the merge-
and-merge strategy, in order to obtain achievable entangle-
ment rates. Hence it would be very meaningful to devise
such a direct exchanging protocol. Moreover, recent results
for one-shot quantum state merging [19] and implementing
bipartite unitaries [20] may be useful to figure out novel
strategies which can provide tighter achievable bounds than
those in Theorem 1.
As potential applications of the state exchange, our task

can be considered as a simple and fundamental situation in
distributed quantum computation [20–23], in which multi-
ple quantum devices connected by a network for quantum
communication are exploited. Moreover, it turns out that
SWAP gates play a crucial role in universal quantum
computation [24]. Since the state exchange is conceptually
nothing but a SWAP operation between two remote users,
our results would be useful to realize the SWAP gates in
distributed quantum computation with reduced entangle-
ment costs.
Finally, we expect that studying variations on the state

exchange with QSI makes quantum information theory
richer. For example, one can assume that Alice and Bob can
consume noisy resources [25,26] instead of noiseless
resources, or that Alice or Bob is additionally allowed to
make use of a local resource, such as maximally coherent
states [27–29], as in the incoherent state merging [29] and
the incoherent state redistribution [30]. Exploring these
avenues deserves further investigation.
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