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We consider a quantum communication task between two users Alice and Bob, in which Alice and Bob
exchange their respective quantum information by means of local operations and classical communication
assisted by shared entanglement. Here, we assume that Alice and Bob may have quantum side information,
not transferred, and classical communication is free. In this work, we derive general upper and lower
bounds for the least amount of entanglement which is necessary to perfectly perform this task, called the
state exchange with quantum side information. Moreover, we show that the optimal entanglement cost can
be negative when Alice and Bob make use of their quantum side information. We finally provide conditions
on the initial state for the state exchange with quantum side information which give the exact optimal

entanglement cost.
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Introduction.—In quantum information theory, one of
the most traditional research topics has been source coding
problems of transmitting Alice’s quantum information to
Bob under various situations, with paradigmatic examples
including Schumacher compression [1] and quantum
teleportation [2]. A decade ago, Oppenheim and Winter
devised a new type of a quantum communication task
named state exchange [3], in which Alice and Bob
exchange their quantum information with each other by
means of local operations and classical communication
(LOCC) and shared entanglement, and they studied the
least amount of entanglement consumed in the task when
free classical communication is allowed.

In the original state exchange task, it is assumed that both
Alice and Bob do not have any quantum side information
(QSI), which is not transferred during the protocol. On the
other hand, most quantum communication tasks, including
state merging [4,5] and state redistribution [6,7], begin with
the assumption that either Alice or Bob has QSI. For
example, in the state merging task, Bob can make use of his
QSI for merging Alice’s information to himself, and the
minimum amount of entanglement needed for merging
turns out to be exactly given by the quantum conditional
entropy [8] conditioned on Bob’s QSI.

In this work we generalize in the state exchange to an
exchanging task allowing Alice’s and Bob’s QSI, which is
called the state exchange with quantum side information.
We consider three parties, Alice, Bob, and a referee (R),
sharing a pure initial state [y) = |w) ¢, pc,r @8 depicted in
Fig. 1. The aim of Alice and Bob is to exchange their
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quantum information C, and Cg, while the referee does
nothing. To achieve their aim, Alice and Bob make use of
their QSI A and B, and they have additional systems En
EQ" and EB, EQ" for the use of entanglement resources.

Our main question can be formulated as follows: Does
there exist a crucial difference in optimal strategies between
the tasks of state exchange with and without QSI?

To answer this question we formally define the state
exchange with QSI and its optimal entanglement cost in the
asymptotic scenario, and then derive an upper bound for the
optimal entanglement cost by conceiving a two-step strat-
egy based on the idea mentioned in Ref. [3]. We show that
in general this strategy does not provide the optimal
entanglement cost of the state exchange with QSL
However, for a specific initial state of the state exchange
with QSI, the upper bound shows that the optimal entan-
glement cost for the state exchange with QSI can be
negative, meaning that entanglement is in fact gained
rather than consumed in the protocol. This result is quite
remarkable since the optimal entanglement cost for the
state exchange without QSI cannot be negative [3]. More
importantly, this implies that the use of Alice’s and Bob’s
QSI can significantly reduce the optimal entanglement cost
of the exchanging task.

We furthermore consider an idealized situation in which
the referee plays a more active role and can help Alice and
Bob to exchange their information [3]. By virtue of the
referee’s assistance, it is possible for Alice and Bob to
more efficiently perform the state exchange with QSI, and
this provides us with converse bounds on the optimal
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entanglement cost, which are lower bounds for any
achievable entanglement rate. As an application of our
bounds, we present conditions on the initial state for the
state exchange with QSI such that the exact optimal
entanglement cost can be obtained.

State exchange with quantum side information.—In the
task of state exchange £ with QSI as described in Fig. 1,
the global initial state y; and the global final state v, are
given by

— L i /
— l// ® @EXE;; and l//f — l// ® (DEK"EEU[’

where v = |w) (y|, ® gngin and @ pou pon are pure maximally

entangled states with Schmidt rank e™(€) and e®'(€),
respectively, y' = (T4pr ® Teymco, ® Iey—c,)(w), and
Cy (C)) is Alice’s system (Bob’s system) with dim Cj; =
d1m Cg (dim C), = dim C,). Then a joint operation

E: ACAEY ® BCRER — ACLEY" ® BC, E}"

is called the state exchange with quantum side information
of |w) with error ¢, if it is performed by LOCC, and satisfies

1€ ® Tr)(yi) —wyll, <e
where || - ||, is the trace norm [8].

Let us now consider n independent and identically
distributed copies of |y), say, |y)®". If £, indicates a
state exchange with QSI of |y)®" with error ¢,, then the
resource rate [loge™(€,) —loge®™(€,)]/n is called the
entanglement rate of the protocol. If there is a sequence
{&,} hen of state exchanges &, with QSI of |y/)®" with error
€, such that

log ™ (E,) — log e®" (€ )
lim —2 (€4) ge™(E) =e,, lime, = 0,
n—oo n n—o0o
C, ¢.) & (e C
—
E}\n Eén I |Exut IEé’m
Alice Bob Alice Bob
FIG. 1. Tllustration of state exchange protocol £ with QSL

Starting from an initial state |y),c, pc,g Of Alice, Bob, and a
referee (R), Alice and Bob exchange their parts C, and Cy,
exploiting their respective QSI A and B. The ancillary systems E'f
and Eg‘ represent an initial entanglement consumed for the
exchanging task, while EQ" and ER" indicate entanglement
generated from the task.

then the real number e, is called an achievable entangle-
ment rate for the state exchange with QSI of |y). The
infimum of the achievable entanglement rates defines the
optimal entanglement cost e, for the considered task.

Note that the optimal entanglement cost only depends on
the reduced state of Alice and Bob, as the referee does not
play any active part in the protocol.

Merge-and-merge strategy.—We first present a merge-
and-merge strategy which is motivated by the merge-and-
send protocol introduced in Ref. [3]. The idea of this
strategy is as follows. Firstly, Alice’s part C, is merged
from Alice to Bob by using BCy as QSI. After finishing
merging C,, Bob’s part Cy is merged from Bob to Alice by
using Alice’s QSI A so that Alice’s C, and Bob’s Cy are
exchanged. By using the exact formula of the entanglement
cost for merging [6,9,10], we have that the optimal
entanglement costs of merging C, and merging Cgp are
the quantum conditional entropies H(C,|BCg) and
H(Cgl|A), respectively, so that the total entanglement cost
is H(Cg|A) + H(C,|BCg), where the quantum conditional
entropy H(X[Y), of a state pyy is defined by
H(XY),-H(Y),, with H(X) the von Neumann entropy
[8] of a state py.

From the merge-and-merge strategy, we obtain the
following upper bound for the optimal entanglement cost
of the state exchange with QSIL

Theorem 1.—The optimal entanglement cost e, for the
state exchange with QSI of |y) is upper bounded by

Copt < u(l//) = min{”l(l//)v MZ(W)}7
where u;(y) = H(Cg|A), + H(CA|BCg),, and u,(y) =
H(CAlB)y/ + H(CB |ACA)V/‘

Note that u,(y) in Theorem 1 can be obtained by firstly
merging Bob’s part Cy to Alice. We further refer the reader
to Supplemental Material [11] for the rigorous proof of
Theorem 1, which fulfills the definition of achievability.

Optimal strategy?—Since the merge-and-merge strategy
is simple and intuitive, one may guess that the strategy is
optimal for any initial state of the exchanging task.
However, the following example shows that there can be
a more effective strategy than the merge-and-merge one.
Let us consider a specific form of the initial state,

|l/~/>ACABCBR = |$>AC}\BC}3R1 ® ‘GHZ>CZAC§R2’ (1)

where systems C, = CA\C%, Cg = CLCx, R = R\R,, |¢)
is an arbitrary state on the system AC\BCLR,, and

|GHZ) CACiR, —

Z |\kkk)

is the Greenberger-Horne-Zeilinger state [14] with d > 2.
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In order to exchange Cy and Cy in Eq. (1), it suffices for
Alice and Bob to only consider the state exchange with
QSI of |¢), since the parts C% and C% of the state |GHZ)
are symmetric. Then by applying the merge-and-merge
strategy on |§), we obtain a tighter upper bound
min{u, (), u,(¢)} for the optimal entanglement cost for
the state [) in Eq. (1) as follows:

min{u, (4), ux(¢)} = min{u;(F), ()} —logd. (2)

From the relation between upper bounds in Eq. (2), we
remark that there can be an arbitrarily large gap between
the optimal entanglement cost and the upper bound in
Theorem 1, implying that the upper bound is not optimal in
the general case. This example also shows that there exist
tighter upper bounds for the optimal entanglement cost. On
this account, we argue that the optimal strategy for state
exchange with QSI is generally nontrivial.

Converse bounds.—As in the state exchange without
QSI [3], we can imagine that the referee holds the reference
R, and is ideally allowed to assist Alice and Bob in the
following way, which is here called the R-assisted state
exchange with QSI. The referee first divides their part R
into two parts E and V by using a quantum channel A/ from
R to V whose complementary channel A¢ is from R to E
[8]. Next, the referee sends the states py = N (pg) and
pe = N¢(pg) to Alice and Bob, respectively. Then the
initial state |y) becomes |y),c,vpc,r» Where Alice and
Bob hold AC,V and BCRE, respectively. Alice and Bob
now perform the state exchange with QSI of the
state |W>ACAVBCBE'

For each n, let £R be a state exchange with QSI of [y)®"
with error e,, and EY' and E' be total amounts of
entanglement between Alice and Bob before and after
the state exchange with QSI, respectively. Then they can
be expressed as ET = nH(ACLV) + loge™(ER) and
E¥ = nH(ACgV) + log e®™(ER). Since the total entangle-
ment between Alice and Bob cannot increase under LOCC
[15], we have EY*f > E: that is,

log e™(ER) — log e (ER) > nH(ACEV) — nH(ACLV).

Let effpt be the optimal entanglement cost for the R-assisted
state exchange with QSI, then
mAE}x[H(ACBV) — H(AC,\V)] < €&

opt*

Since any state exchange with QSI can be considered as an
R-assisted state exchange with QSI (in which the referee
trivially does nothing), it holds that e§pt < egp- This leads
us to the following theorem.

Theorem 2.—The optimal entanglement cost e, for the
state exchange with QSI of |y) is lower bounded by

l(l//) = mAZ}X[H(ACBV)N(W) - H(ACAV),/\/(W)] < eopt’

where the maximum is taken over all quantum chan-
nels N: R — V.

In general, it is not easy to calculate the converse bound
in Theorem 2, since it involves an optimization over all
quantum channels. However, if the referee sends the
whole part R to either Alice or Bob without dividing R
in Theorem 2, then we obtain the following computable
converse bound:

Corollary 3.—For the state exchange with QSI of |y),
the optimal entanglement cost e, satisfies

max{ll (W>’ ZZ(W)} < €opt>

where  [,(y) = H(ACg), — H(AC,), and
H(BC,), — H(BCg),,.

By using the continuity of the von Neumann entropy
[16,17], we can directly show that /;(y) and L,(y) in
Corollary 3 are lower bounds to the optimal entanglement
cost for the state exchange with QSI of |y). The proof of
Corollary 3 can be found in Supplemental Material [11].

Large gap between converse bounds.—It is obvious that
the lower bound presented in Corollary 3 is less tight than
the one in Theorem 2. Interestingly, the gap between these
two converse bounds can be arbitrarily large. To this end,
let us consider the initial state

L(y) =

W) ac,scar = |P)ar, ® |q’>cARCA ® [®) g, ® |q)>CBRCB’
3)

where the reference system R consists of the four sub-
systems Ry, R¢,, Rp, and R, and |®) is a maximally
entangled state on the corresponding bipartite system SR
with dim S = dim Rg for S = A, B, C,, and Cg. Then we
can readily see that
L(p) =H(Cg)y — H(Cp)y = —L ().

On the other hand, if a channel A\ is given by pg = pp, Rey?
that is, V = RARc,, then we obtain

() 2 H(ACV) ) = H(ACAV )
= H(ACBRARCA)V_I - H(ACARARCA)V_/

which means that the converse bound /() in Theorem 2
can be arbitrarily larger than max{/,(y),l(w)} in
Corollary 3 for the class of initial states in Eq. (3).
Optimal entanglement cost can be negative.—We finally
address the crucial question: Can the optimal entanglement
cost for state exchange with QSI be negative? First of all, let
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us remark that the optimal entanglement cost for state
exchange without QSI of |y) ¢, ¢,z cannot be negative [3].
If the optimal cost was negative, then Alice and Bob could
generate as much entanglement as they need by repeatedly
exchanging their state. This contradicts the basic require-
ment that the amount of entanglement cannot increase by
LOCC [18].

However, quite remarkably, the optimal entanglement
cost ey for the state exchange with QSI of [y) can be
negative. This is readily seen since the upper bounds u; or
u, in Theorem 1 can be negative. For example, e, is
negative for the initial state

A [1-2
W) ac.scyr = \/;|OOOOO> + T|10011>
A 1-2
+ \601100> + F T|01010>’ (4)

with 4 > 0.65, as seen in Fig. 2. Furthermore, this example
shows that, in the state exchange with QSI, the optimal
entanglement cost can be generally reduced by exploiting
the QSI AB for the exchanging task. This reveals the
prominent role of the QSI for such a quantum communi-
cation primitive.

At this point we remark that the negativity of the optimal
entanglement cost for the state exchange with QSI does not
lead to a contradiction as follows. Let eéﬁ,‘t be the optimal
entanglement cost for a state exchange with QSI of the
initial state [y), and let e be the optimal entanglement
cost for a state exchange with QSI of the exchanged state
|'). Then from Corollary 3,

ey 2 11 (w) and egy! > 1 (') = ~11(w).

So in this case we have the inequality eg3; + €25 > 0. This
shows that the total amount of entanglement generated
from repeated state exchange protocols with QSI does not
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FIG.2. Upperbounds u,(y;), u,(y;) and lower bounds /; (),
I,(y,) to the optimal entanglement cost e, for the specific initial
state |w;) of Eq. (4) with 0 <4 < 1.

repeatedly increase although the entanglement cost can be
negative in an individual instance of the protocol.

Optimal entanglement costs for some special cases.—We
now provide several conditions which allow us to compute
the exact optimal entanglement cost e, for the state
exchange with QSI of |y). In fact, the merge-and-merge
strategy is optimal under these conditions.

Corollary 4.—Let e, be the optimal entanglement cost
of the state exchange with QSI of |y) = |w)sc, sc,r-

(i) The following conditions on |y) give the exact
optimal entanglement costs:

I(R;CAlA), =0 © eop = ui(w) = 11 (y),
I(R;CA|B), =0 ey = ur(y) = 1y (),
I(R;CB|A)W =0 eop = u(w) = L(y),
I(R; Cg|B),, = 0 & eqp = ur(w) = L(y),

where [(X;Y|Z), indicates the quantum conditional
mutual information (QCMI) of a quantum state pyy,, and
ur(w), uy(w), 1 (w), and I, (y) are given in Theorem 1 and
Corollary 3.

(ii) There exists a quantum channel N': R — V such that
I(Cg; VIA) () = I(Cas E|AV) 5,y = 0 if and only if
eopt = Ui () = I(y), where I(y) is in Theorem 2.
Similarly, there exists N:R—V such that
I(CAs E|B) yy) = I1(C3 VIBE) 5y = 0 if  and  only
if €opt — MZ(W) = l(l//)

(iii) Let [{) sc, pc, be a pure initial state shared by Alice
and Bob (with no referee), then for the state exchange with
QST of |) sc, pc,» One has ey = H(ACg),; — H(AC,),.

By combining the aforementioned upper and lower
bounds, the conditions for the exact optimal cost in
Corollary 4 are directly obtained. We remark that there
are no general implications among the four QCMI con-
ditions in Corollary 4 (i); that is, there exists an initial state
which only satisfies one of these QCMI conditions. We
present related examples in Supplemental Material [11].

Conclusion.—In this work, we have considered the state
exchange with QSI as a fundamental quantum communi-
cation task, and have provided the formal descriptions for
the protocol and its optimal entanglement cost. We have
derived upper and lower bounds to the optimal entangle-
ment cost. From these bounds, we have exactly evaluated
the optimal entanglement cost for several special classes of
states, including all pure bipartite states. Furthermore, we
have shown that the optimal entanglement cost for the state
exchange with QSI can be negative. This is at striking
variance with the state exchange without QSI, whose
entanglement cost is always non-negative.

By replacing classical communication with quantum
communication, we can consider a fully quantum version
of the state exchange with QST of [y) 4, pc, &- Similar to the
idea of Theorem 1, this task can be performed by applying
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the state redistribution protocol [6,7] twice. For example, if
the part Cy is firstly redistributed from Alice to Bob in this
strategy, then its achievable rates E, and Q, for ebits and
qubit channels are given by

[1i(y) + L(w)].
() + 5 [H(CAlA), + H(CalBCA), .

where u;(y), I;(y), and L(y) are in Theorem 1 and
Corollary 3. However, in this case the achievable region of
a resource pair (E,, Q,) is completely unknown.

To the best of our knowledge, a protocol exchanging
Alice’s and Bob’s information in a single step has not been
known, and so in this work we have considered the merge-
and-merge strategy, in order to obtain achievable entangle-
ment rates. Hence it would be very meaningful to devise
such a direct exchanging protocol. Moreover, recent results
for one-shot quantum state merging [19] and implementing
bipartite unitaries [20] may be useful to figure out novel
strategies which can provide tighter achievable bounds than
those in Theorem 1.

As potential applications of the state exchange, our task
can be considered as a simple and fundamental situation in
distributed quantum computation [20-23], in which multi-
ple quantum devices connected by a network for quantum
communication are exploited. Moreover, it turns out that
SWAP gates play a crucial role in universal quantum
computation [24]. Since the state exchange is conceptually
nothing but a SWAP operation between two remote users,
our results would be useful to realize the SWAP gates in
distributed quantum computation with reduced entangle-
ment costs.

Finally, we expect that studying variations on the state
exchange with QSI makes quantum information theory
richer. For example, one can assume that Alice and Bob can
consume noisy resources [25,26] instead of noiseless
resources, or that Alice or Bob is additionally allowed to
make use of a local resource, such as maximally coherent
states [27-29], as in the incoherent state merging [29] and
the incoherent state redistribution [30]. Exploring these
avenues deserves further investigation.
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