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Dynamical decoupling (DD) is an active and effective method for suppressing decoherence of a quantum
system from its environment. In contrast to the nominal biaxial DD, this work presents a uniaxial
decoupling protocol that requires a significantly reduced number of pulses and a much lower bias field
satisfying the “magic” condition. We show this uniaxial DD protocol works effectively in a number of
model systems of practical interest, e.g., a spinor atomic Bose-Einstein condensate in stray magnetic fields
(classical noise), or an electron spin coupled to nuclear spins (quantum noise) in a semiconductor quantum
dot. It requires only half the number of control pulses and a 10–100 times lower bias field for decoupling as
normally employed in the above mentioned illustrative examples, and the overall efficacy is robust against
rotation errors of the control pulses. The uniaxial DD protocol we propose shines new light on coherent
controls in quantum computing and quantum information processing, quantum metrology, and low field
nuclear magnetic resonance.
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Introduction.—Decoherence, due to coupling of a sys-
tem to its surrounding environment, is a key obstacle in
practical applications of quantum technologies [1–3].
Reliable quantum operations cannot proceed effectively
or coherently without the decoherence of a quantum state
under control [4]. One may naively hope for the existence
of a system perfectly isolated from its environment.
However, this imposes a heavy resource requirement and
extreme conditions, such as ultralow temperature, ultrahigh
vacuum, ultraweak or ultrastrong magnetic fields [5–7],
etc., some of which for all practical reasons cannot be
achieved. Alternatively, one can search for strategies
capable of slowing down or suppressing decoherence.
Dynamical decoupling (DD) is one such frequently

employed decoherence-suppression method. It is capable
of reducing effectively the coupling structure as well as the
strength between a quantum system and its environment,
thereby decoupling (or isolating) the system from its
environment [8–11]. DD has been widely employed for
more than half a century in nuclear magnetic resonance
(NMR) to isolate subsystems of nuclear spins from nearby
spins and more recently in demonstrating robust quantum
memory and universal quantum gate operations [12–18].
Experiments in electron-nuclear spins and nitrogen vacancy
centers have further established it as a powerful technique,
e.g., capable of preserving arbitrary quantum states over
extended times [18–23].
Most DD protocols employ biaxial resonant rotations,

which in the presence of a large bias magnetic field along
the z axis (the quantization axis), can be constructed in
terms of two rotations along two orthogonal (e.g., x or y)
axes, respectively. These resonant rotations can be either

discrete or continuous, respectively, associated with bang-
bang DD or continuous DD [9,12,23–35]. For bang-bang
DD, many sophisticated protocols have been developed,
e.g., periodic DD (PDD) or concatenated DD, which
requires hard (delta function) pulses with a total number
scaling as 4L for L cycles and progression to even 4L for L-
level concatenation [26,36]. Several advanced schemes
were utilized to optimize DD protocols, respectively, given
rise to the Uhrig DD [31], concatenated Uhrig DD [37], and
quadratic DD [38], with variable pulse delays to suppress
high order noise correlations [39]. A question of great
importance is: can one reduce the number of pulses, e.g., to
2L for L-cycle DD while maintaining the same level of
noise suppression as in 4L PDD?
The uniaxial DD (Uni-DD) protocol we present in this

Letter achieves such a challenging goal, making it a more
efficient replacement for the usual biaxial PDD protocol.
We show that the number of pulses reduces to the order of
2L for L-cycle DD while the performance remains similar
to or better than the usual 4L PDD protocol. In addition,
the z-axis bias magnetic field is reduced to about 100
times the average noise fields in the examples we studied,
which is much less than the 1000 ∼ 10 000 times typically
required in NMR experiments [10,40,41]. Numerical
simulations reveal the superior performance of our Uni-
DD in a spinor Bose-Einstein condensate (BEC) deco-
hered by stray magnetic fields and in a semiconductor
quantum dot (QD) electron spin qubit decohered by
nuclear spins. Our result can be applied to research in
low field DD in quantum information, NMR, magnetic
resonance imaging, and quantum sensing beyond standard
quantum limit [42–44].
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Uni-DD protocol.—We first briefly review the usual
PDD protocol which forms the basis of the more advanced
DD protocols. A qubit is decohered in general by stochastic
interactions along three orthogonal directions, the longi-
tudinal along the z axis causes dephasing while the trans-
versal along the x or y axis induces bit flip. Biaxial DD
protocol suppresses the transversal noise by π pulses along
the z axis (denoted as Z pulses) and the longitudinal noise
by π pulses along either the x or y axis (denoted as X or Y
pulses, respectively) [12,36].
The Uni-DD protocol we present also suppresses noise

in all three directions. Similar to the biaxial DD, Y pulses
are employed to suppress dephasing from z-axis noise.
Unlike the biaxial DD, a relatively strong bias magnetic
field along the z axis is introduced to suppress transversal
noises along the x or y axis (see Fig. 1). The main
inspiration to our idea comes from the observation that a
strong longitudinal magnetic field suppresses transverse
fluctuating fields [45]. We further require the pulse delay τ
and the effective Larmor precession frequency ω to satisfy
ωτ ¼ n2π, with n a positive integer. At this “magic”
condition, the qubit processes an integer number of rounds
in the bias magnetic field between Y pulses.
The Uni-DD protocol can be denoted in short hand as

½YUτYUτ�L for the L cycle with Uτ the precession
operator, and the pulse delay τ satisfying the magic
condition within the shortest decoherence time possible.
The latter is often given by the inhomogeneous broad-
ening induced lifetime T�

2 [46]. More details on the above
results can be found in the Supplemental Material [47],
where we show the number of pulses for the Uni-DD is
2L, or about half of the 4L pulses required by the PDD. In
the following, we consider two concrete examples illus-
trating that our Uni-DD protocol is capable of suppressing
classical or quantum noise.

Suppressing classical stray magnetic fields in a spinor
BEC.—As a model system decohered by classical noise, we
consider a ferromagnetically interacting spin-1 atomic BEC
under stray magnetic fields. Its full quantum state evolution
is simulated including the Uni-DD protocol [48]. Such a
model allows the condensate spin degrees of freedom to be
treated in terms of a large collective spin J (with J ¼ 103),
which decohers by the stochastic rotations due to weak
stray magnetic fields [49–51]. In the absence of the Uni-DD
pulses, the model system is described by the Hamiltonian
H ¼ c02J

2 þ ωJz þ γb · J, with c02 the effective atomic spin
exchange interaction strength, ω ¼ γB the Larmor fre-
quency in the longitudinal bias magnetic field B (γ is the
gyromagnetic ratio), and b the stray magnetic field sto-
chastic in its direction and amplitude with a cutoff bc
(bx;y;z ∈ ½−bc; bc�). For simplicity, the chosen stray field
distribution function mimics a white noise, with the
probability density for each realization uniformly distrib-
uted in direction and amplitude over a limited range. We set
ℏ ¼ 1, γ ¼ 1, and bc ¼ 1 for numerical simulations. The
energy and the time units are bc and b−1c , respectively. For
the Uni-DD, we choose a pulse delay of τ ¼ 0.05. The Uni-
DD Y pulses are assumed to be hard π pulses, i.e., a
temporal delta function with zero pulse width [52,53].
The simulations are carried out for four initial conden-

sate spin directions, respectively along the x, y, z, and
−z axes, and the initial quantum state is either a coherent
spin state (CSS) or a squeezed spin state (SSS). The worst
performing case among the four is reported as a benchmark.

We monitor the normalized spin average j=J with j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJxi2 þ hJyi2 þ hJzi2

q
for an initial CSS and the squeez-

ing parameter ξ2 ¼ 2 minfΔJ2x;ΔJ2y;ΔJ2zg=J with ΔJ2α ¼
hJ2αi − hJαi2 (α ¼ x, y, z) for an initial SSS during the Uni-
DD [54–56]. In the absence of noises, the normalized spin
average and the squeezing parameter should stay at unit and
0.000 91, respectively. Therefore, their respective rate of
deterioration in the presence of noise manifests how fast the
initial quantum system is decohered. A slower rate of
deterioration due to the Uni-DD pulses than under pure free
evolution (FE) indicates noise suppression.
The coherence time of the condensate spin in an initial

CSS is clearly seen prolonged by 2 orders of magnitude as
shown in Figs. 2(a) and 2(b), if the magic condition ωτ ¼
2π is satisfied. For the more “quantum” initial SSS, which
is highly entangled and strongly correlated and thus
expected to be more fragile or sensitive to noise, the
coherence time is also seen prolonged by 2 orders of
magnitude under the same magic condition [Figs. 2(c)
and 2(d)] [57].
Enhanced understanding is gained by calculating

analytically the evolution operator for a unit cycle of Uni-
DD: U2τ ¼ ½YUτYUτ�. Following the Fer expansion
under the magic condition ωτ ¼ 2π, we find Uτ ≈
expð−iτc02J2Þ expð−iτHF;1Þ expð−iτHF;0Þ with HF;0¼
γbzJz and HF;1¼γ2ðbz=ωÞðbxJxþbyJyÞþJzðb2xþb2yÞ=ð2ωÞ
[58,59]. By further employing the Magnus expansion, we

FIG. 1. The schematic illustration for one cycle of the Uni-DD
½YUτYUτ� on the Bloch sphere. (I) A spin or qubit precesses
around the total field composed of a large (longitudinal) bias and
a small stochastic field for a duration τ (blue solid lines), (II)
rotated by a hard Y pulse (red dashed lines), (III) precesses around
the total field for another τ, (IV) and rotated by a second Y pulse.
The green solid line denotes the initial spin or qubit state.
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obtain U2τ ≈ expð−i2τc02J2Þ exp½−i2τγ2ðbz=ωÞbyJy� to the
leading nonzero order [9,10,59]. The derivation details can
be found in the Supplemental Material [47], which includes
Refs. [60–62]. Compared to the corresponding FE opera-
torUFE ¼ expð−i2τc02J2Þ exp½−i2τγðbxJx þ byJy þ bzJzÞ�
without the bias magnetic field, the effective coupling
strength between the condensate spin and the straymagnetic
field is seen to be reduced by a factor of bz=B, which can
become much smaller. Thus, noise suppression of the Uni-
DD protocol is rooted in the bias field’s suppression of the
transversal fluctuation field and augmented by the cancel-
lation of the longitudinal fluctuation field from the Y pulses.
This is quite different from the nominal biaxial DD protocol,
which often relies on the smallness of the pulse delay.
Suppressing nuclear spin quantum noise in a QD.—

Unlike the classical environment described by stochastic
complex fields, a proper description for a quantum envi-
ronment must deal with environment operators and their
correlations. To illustrate the power of the Uni-DD, we
choose a gate-defined GaAs semiconductor QD system
which is well described by a central spin model with the
electron spin decohered by the surrounding nuclear spins
[19,30,63–65]. To further simplify the problem, we assume
the electron spin (S) as well as all nuclear spins (Ik) are

spin-1=2. The coupling Ak between S and Ik results from
the Fermi contact hyperfine interaction [46,66]. The
Hamiltonian for the model system of N nuclear spins
without Uni-DD takes the form H ¼ S ·

P
N
k¼1 AkIkþP

N
i<j ΓijðIi · Ij − 3Iiz · IjzÞ. In general, Ak is proportional

to the local density of the electron at the position of the kth
nucleon. In this work, it is modeled as in Ref. [67] for
N ¼ 4 × 5 nuclear spins, by Ak ∝ exp½−ðx − x0Þ2=w2

x−
ðy − y0Þ2=w2

y�, a 2D Gaussian form with effective widths
wx=ax ¼ 3=2 and wy=ay ¼ 2 and a shifted center x0=ax ¼
0.1 and y0=ay ¼ 0.2, leading to the final values of Ak
ranging between 0.309 and 0.960. Γij accounts for the
magnetic dipolar interaction of nearest neighbor nuclear
spins and is randomly distributed between 0 and 0.01.
It is well known for a GaAs QD system that the short

time FE quantum dynamics agrees well with the classical
(quasistatic bath approximation) fluctuation model, but the
long time dynamics gradually deviates, implicating the
important role played by quantum correlations within the
coupled central spin system [46,68,69]. We expect our Uni-
DD would prolong the coherent dynamics, and quantum
simulations are thus carried out to fully account for the
quantum corrections.
Starting from the electron spin initially pointing along x,

y, z, and −z axis, respectively, the system evolution is
simulated quantum mechanically with the Chebyshev
polynomial expansion method [70]. The initial nuclear
spin state is a fully mixed state which is approximated
numerically by a random pure state [2,71]. The evolution is
recorded, and the fidelity, which calibrates the survival
probability of the initial electron spin state, FðtÞ ¼
Trfρeð0ÞTrn½ρðtÞ�g, is calculated, where Trn½ρðtÞ� is the
reduced electron spin state after tracing out all nuclear
spins. The worst case fidelity, Fw ¼ minfρeð0ÞgðFÞ, among
the four initial states is easily identified and used as a
benchmark and shown in Fig. 3. Compared to FE, the
coherence time of the electron spin is prolonged by up to 2
orders of magnitude with Uni-DD, depending on whether
the condition ωτ ¼ 2π is satisfied or not [Fig. 3(a)].
Compared to PDD, the Uni-DD is also found to be superior.
The enhanced coherence time implicates successful decou-
pling of the electron spin from its surrounding nuclear
spins. More interestingly, the magic condition exhibits a
resonance, around which the characteristic coherence time
of the Uni-DD protocol T0.9 versus the Larmor frequency ω
of the bias field (ω ¼ γB) is shown in Fig. 3(b).
The decoupling by the Uni-DD protocol under the magic

condition for theQDmodel can again be proven analytically
by following the Fer expansion of Uτ with the average
Hamiltonian theory based on the Magnus expansion.
Although the average Hamiltonian theory does not directly
apply since the convergence condition jHjτ ≪ 1 is violated,
its application becomes possible after adopting the Fer
expansion of Uτ in a rotating reference frame defined by
the bias field [58,59]. In fact, Fer expansion is applicable at
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FIG. 2. Suppressing classical noise with Uni-DD in a spinor
atomic BEC for τ ¼ 0.05. (a) The evolution of the spin average
under Uni-DD cycles for an initial CSS in the worst case at ω −
ωm ¼ −2 (magenta squares), −1 (blue circles), 0 (red solid line),
1 (blue dashed line), and 2 (magenta dotted line). The magic
condition requires ωm ¼ 2π=τ ≈ 126. The FE results are pre-
sented for easier comparisons. The horizontal green dashed line
denotes how the characteristic time T0.9, where j=J ¼ 0.9, is
extracted. (b) Dependence of the enhanced coherence time on the
Larmor frequency (or the bias field). A peak occurs at the magic
condition ωmτ ¼ 2π. (c) Same as (a) except for the squeezing
parameter ξ2 with an initial SSS. The horizontal green dashed line
is for T0.05 where ξ2 ¼ 0.05. (d) Same as (b) except for T0.05 with
an initial SSS.
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treating long time quantum evolution beyond the conver-
gence radius of thewidely usedMagus expansion [9,10,59].
After a straightforward derivation at the magic condi-
tion ωτ ¼ 2π, we find Uτ ≈ exp½−iτHF;1� exp½−iτHF;0�,
where HF;0 ¼ Szhz and HF;1¼SxðhzhxþhxhzÞ=ð2ωÞþ
SyðhzhyþhyhzÞ=ð2ωÞþSzðh2xþh2yÞ=ð2ωÞþiðhxhy−hyhxÞ=
ð4ωÞ with the quantum Overhauser field operator
hα∈fx;y;zg ¼

P
N
k¼1 AkIkα. For one Uni-DD cycle, the

evolution operator reduces to U2τ ¼ ½YUτYUτ�≈
expf−i2τ½SyðhzhyþhyhzÞ=ð2ωÞþ iðhxhy−hyhxÞ=ð4ωÞ�g,
as shown in detail in the Supplemental Material [47], where
Refs. [72–74] are included. Similar to the classical noise
example considered earlier, one sees immediately that the
relatively strong bias field suppresses the relaxation effect of
the transversal quantum noise and the Y pulses suppress the
dephasing effect of the longitudinal quantum noise [75].
Robustness of the Uni-DD against rotation angle

errors.—To estimate the robustness of the Uni-DD proto-
col, we consider rotation angle error ε of the Y pulses, i.e.,
assuming an imperfect rotation angle of the Y pulse
ð1 − εÞπ. As shown in Fig. 4, even a small ε ¼ 1% causes
the worst case fidelity Fw to drop significantly. Such a
sensitive dependence on the rotation angle can be remedied
by replacing one of the Y pulses with a Ȳ pulse, which
rotates along the −y direction with the same imperfect
angle ð1 − εÞπ. This idea is behind the Carr-Purcell-
Meiboom-Gill (CPMG) protocol which improves greatly
the robustness of the Carr-Purcell protocol [11,76,77].
Remarkably, the modified Uni-DD protocol likewise shows
strong robustness against the rotation angle error, as
illustrated in Fig. 4. Even for ε ¼ 3%, the coherence time
remains prolonged by an order of magnitude. For a smaller

ε ¼ 1%, the Uni-DD protocol is seen to almost reach the
same outcome as in the perfect pulse case of ε ¼ 0.
Finally, we note the Uni-DD protocol we discuss differs

fundamentally from the single pulse Hahn echo by requir-
ing the magic condition. Such a condition in the Uni-DD
allows the bias field to stay as low as possible while
keeping the noise suppression effect comparable or even
better than in the Hahn echo, as shown in Fig. 3(a) (and
more in the Supplemental Material [47]). By adopting
symmetrization and concatenation, more advanced DD
protocols based on Uni-DD may be developed with
improved performances. Our preliminary investigations
into the performance comparisons of the Uni-DD with
the standard symmetrized DD, the second level concat-
enated DD, the nonequidistant concatenated Uhrig DD, and
the quadratic DD are presented in the Supplemental
Material [47], with Ref. [78] included. More efforts could
be devoted to explore systematically these protocols in
order to find the most suitable one for a specific experi-
ment [79].
In conclusion, we propose a Uni-DD protocol for

suppressing the decoherence of an open quantum system
from its environment. Compared to the nominal biaxial
PDD, the Uni-DD achieves the same degree of noise
suppression with half the number of control pulses. We
demonstrate with numerical and analytical calculations the
efficacy of the Uni-DD under the magic condition ωτ ¼ 2π
in suppressing the classical stray fields in a spinor BEC and
in suppressing the quantum nuclear spin noises in a GaAs
QD. Our results point to alternative low-cost DD tech-
niques which may find wide applications in quantum
computing and quantum information processing, NMR
and magnetic resonance imaging, as well as quantum
precision measurements beyond the standard quantum
limit.
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FIG. 3. Suppression of quantum noise by the Uni-DD in a GaAs
QD for τ ¼ 0.05. (a) The evolution of fidelity underUni-DD cycles
in the worst case for ω − ωm ¼ −2 (magenta squares), −1 (blue
circles), 0 (red solid line), 1 (blue dashed line), and 2 (magenta
dotted line). The FE (black dashed line), Hahn echo (black dash-
dotted line), and PDD (black dotted line) results are also presented
for comparisons. The horizontal green dashed line denotes how the
characteristic time T0.9 is extracted. (b) Dependence of the
prolonged coherence time on the Larmor frequency (or the bias
field), exhibiting a peak at the magic condition ωmτ ¼ 2π.
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FIG. 4. Robustness of the Uni-DD against rotation angle
errors for ½YUτYUτ� with ε ¼ 3% (black dotted line with
triangles), 1% (blue dotted line with circles), 0% (red dotted
line) and for ½ȲUτYUτ� with ε ¼ 3% (black solid line with
triangles), 1% (blue solid line with circles), 0% (red solid line,
coinciding with the red dotted line). The FE results are also
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