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We report Floquet band engineering of long-range transport and direct imaging of Floquet-Bloch bands
in an amplitude-modulated optical lattice. In one variety of Floquet-Bloch bands we observe tunable rapid
long-range high-fidelity transport of a Bose condensate across thousands of lattice sites. Quenching into an
opposite-parity Floquet-hybridized band allows Wannier-Stark localization to be controllably turned on
and off using modulation. A central result of this work is the use of transport dynamics to demonstrate
direct imaging of a Floquet-Bloch band structure. These results demonstrate that transport in dynamical
Floquet-Bloch bands can be mapped to transport in quasistatic effective bands, opening a path to cold atom
quantum emulation of ultrafast multiband electronic dynamics.
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Quantum control of transport in driven lattices may hold
the key to new device types, unexplored techniques for
ultrafast transport of energy and information in solids, and
dynamical tools for controlling and probing condensed
matter [1–11]. Ultracold atomic gases have enabled inves-
tigation of a wide variety of transport-related phenomena,
including Bloch oscillations [12–14], Anderson localiza-
tion [15–17], photoconductivity [18], superfluid critical
velocity [19–21], spin-orbit coupling [22], and pulsed
modulation techniques for wave packet manipulation
[23,24]. The application of Floquet techniques in optical
lattices [2,3] has expanded the control over these systems
and enabled study of phenomena including topological
dynamics [25], renormalization of tunneling [26], corre-
lated tunneling [27], tunable mobility [28], and synthetic
ferromagnets [29]. While modulation techniques have been
used to modify the spatial width of wave packets [30], real-
space control of center-of-mass transport in Floquet-Bloch
bands remains largely unexplored.
Amplitude modulation of an optical lattice creates

quasimomentum-selective band crossings which can be
used to stitch together hybridized Floquet-Bloch bands in a
variety of ways, allowing robust tunable modification of
transport phenomena. We report a series of experiments
probing and controlling transport of ultracold bosonic
lithium atoms in Floquet-Bloch bands and demonstrating
that transport in these dynamical bands can be understood
in the context of a quasistatic effective band structure.
Floquet hybridization in the presence of an applied force
can be used to generate coherent transport over thousands
of lattice sites, switch on and off Bloch oscillations,
and tune the band dispersion by manipulating drive
parameters. As we demonstrate, experimental measure-
ments of dynamical evolution enable direct imaging of
Floquet-Bloch band structure.

Our experimental platform for Floquet band engineer-
ing is a degenerate quantum gas of 7Li in an amplitude-
modulated optical lattice and an applied harmonic mag-
netic potential [see Fig. 1(f)]. Each experiment begins by
producing a Bose condensate of approximately 105 7Li
atoms in the jF ¼ 1; mF ¼ 1i hyperfine state in a crossed
optical dipole trap centered at x ¼ 0. After the final stage
of cooling, a Feshbach magnetic field is tuned to the
shallow scattering length zero crossing near 543.6 G [31]
to eliminate interatomic interactions, and the condensate
is adiabatically loaded into a Heisenberg-limited quasi-
momentum distribution in the ground band of a retrore-
flected optical lattice with an 85 μm beam waist. The
static lattice depth V0 is 5.4ER unless otherwise specified,
where ER ¼ ℏ2k2L=2m is the recoil energy, kL ¼ 2π=λ is
the lattice wave vector, λ ¼ 1064 nm is the lattice wave-
length, and m is the atomic mass. The curvature of the
Feshbach field generates harmonic confinement with trap
frequency ω ¼ 2π × 15.5 Hz. A field gradient from push
coils translates the trap center x0 such that the resulting
force FðxÞ ¼ −mω2ðx − x0Þ drives transport in the lattice
direction once the much tighter optical dipole trap which
pins the atoms to x ¼ 0 is removed. Dynamics are initiated
by switching off the optical dipole trap and simultane-
ously turning on the lattice modulation using an acousto-
optic modulator; this quenches the atomic ensemble into
the hybridized Floquet-Bloch band. If the hybridizing
quasimomentum q� is sufficiently different from the
initial quasimomentum we do not observe heating from
the quench, although in some cases projection of a small
fraction of the atoms to higher bands can occur via
multiphoton transitions. After variable hold time in the
modulated lattice, the atomic position distribution is
measured by in situ absorption imaging.
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Floquet-Bloch band properties and dynamics are calcu-
lated numerically by computing the eigenvalues and
eigenstates of the Hermitian generator of the single-period
time evolution operator [2]. The system can be described by
the 1D time-dependent Hamiltonian,

H ¼ −
ℏ2

2m
∂2
x − V0½1þ α sinð2πνtÞ�cos2

�
πx
d

�

þ 1

2
mω2ðx − x0Þ2; ð1Þ

where x is the position along the lattice, d is the lattice
spacing, m is the atomic mass of 7Li, V0 is the static lattice
depth, α is the modulation strength, and ν is the modulation
frequency. Transverse degrees of freedom play no role in
the dynamics we report. In the absence of the modulation
and for weak force, the spectrum of Eq. (1) consists of
Bloch bands with energy fEjðqÞg, where j is the band

index and q the quasimomentum. Amplitude modulation
satisfying an interband resonance of the ith and jth band,
nhν ¼ ½Eið�q�Þ − Ejð�q�Þ�, where q� is the resonant
quasimomentum and n the photon number, hybridizes
the static spectrum into quasienergy bands fẼiðqÞg. The
wave packet center-of-mass dynamics are dictated by
the local force and the group velocity of the hybridized
band: dq=dt ¼ F and dx=dt ¼ dẼ=dq. While the drive can
in principle hybridize any set of bands with arbitrary order
n, this work focuses on the case of single-photon resonant
hybridization of the ground band with the jth excited band,
which we denote as ð0; jÞ hybridization.
Figure 1 demonstrates the dramatic difference between

transport in the static ground band and transport in a (0,2)
Floquet-Bloch band. In the absence of modulation, the
local force F induces Bloch oscillations [Fig. 1(a)] whose
amplitude in position space is proportional to the static
bandwidth [14]. Amplitude modulation at frequency
ν ¼ 170 kHz and amplitude α ¼ 0.2 hybridizes the ground
and second excited band at quasimomentum q� ≈ 0.4ℏkL
as diagramed in Fig. 1(c). In the Floquet-Bloch band,
instead of exhibitingWannier-Stark localization, the atomic
ensemble undergoes rapid coherent oscillatory transport
across approximately 2000 lattice sites [Fig. 1(b)].
This striking transport behavior is a direct consequence

of the hybridized structure of the Floquet-Bloch band. As
the quasimomentum evolves, the group velocity sharply
increases at the high-curvature point of the Floquet-Bloch
band where jqðtÞj ¼ q�. The resulting rapid transport
carries the ensemble thousands of lattice sites in real space.
On such large length scales, the force due to the harmonic
confinement is no longer approximately constant; the
ensemble moves across the entire applied potential, gaining
and then losing quasimomentum without reaching the
edge of the Brillouin zone. At the position where the
potential energy is the same as it was at the first point of
high band curvature, energy conservation requires that
the ensemble again has quasimomentum q�, and the group
velocity sharply decreases. The microscopic dynamics at
the high-curvature point involve exchange of photons with
the lattice, as occurs, for example, in pulsed Bragg
acceleration techniques used in atom interferometry to
increase free-space momentum [32]. Both direct measure-
ment and Landau-Zener calculations indicate that deviations
from perfect fidelity of transfer between static bands at the
Floquet-induced avoided crossings are below one part in 104

for all data we report. Transport in the hybridized band
is characterized by periods of rapid transfer across the
entire trapping region connected by relatively slow Bloch-
oscillation-like motion at the turning points. Variations in
ensemble width during transport can arise from both force
inhomogeneity [14] and the modified dispersion [33].
The full position-velocity evolution is shown in Fig. 1(e).
Notable features of the observed dynamics include high-
fidelity long-range transport of nearly all atoms in the
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FIG. 1. Rapid long-range transport in a Floquet-Bloch band.
(a) Time sequence of images of a condensate in the ground band
of a 5.4ER-deep lattice undergoing 48 Hz Bloch oscillations [14].
(b) Time sequence of images of a condensate in a (0,2) hybridized
Floquet-Bloch band created via amplitude modulation with ν ¼
170 kHz and α ¼ 0.2, with the same initial force as in (a). Note
the rapid cyclic high-fidelity transport across the trap. (c) Unmodi-
fied band structure. Vertical rippled lines indicate band coupling
at the hybridizing quasimomentum for this modulation frequency.
(d) Calculated dispersion of the unmodified ground band (solid
line) and hybridized Floquet-Bloch band (dashed line). (e) Posi-
tion-velocity evolution in the same hybrid band as (b) with an
initial force corresponding to a Bloch frequency of 38 Hz. Solid
line is theory, points are data at equally spaced times. Error bars
are smaller than plotted points. (f) Experimental schematic.
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condensate, coherent Bloch oscillation dynamics at opposite
ends of the trap, maximum transport velocities far in excess
of those characterizing the bare harmonic potential, and a
high degree of control attainable by varying drive properties.
To further probe the dynamics we study the dependence

of long-range transport on initial applied force, drive
frequency, and hybridized band indices. As shown in
Figs. 2(a) and 2(b), the total transport distance D increases
with increasing force while the oscillation period T
decreases. The observed behavior agrees quantitatively with
fit-parameter-free numerical calculations for the Floquet-
Bloch band shown as solid black lines in Figs. 2(a)–2(c).

Larger total transport distances can be achieved by reducing
the harmonic trap frequency or increasing the applied force,
although the latter method will eventually be limited by
Bragg scattering. Figures 2(d)–2(f) show the results of
varying the hybridizing frequency ν at constant force.
Increasing ν hybridizes the bands closer to the edge of
the Brillouin zone, which increases the time to reach q� so
that the oscillation period increases while the transport
distance remains fixed. Again, the observed wave packet
evolution agrees quantitatively with fit-parameter-free
numerical predictions, demonstrating the effectiveness of
the Floquet-Bloch formalism for describing this controllable
long-distance transport.
Floquet hybridization of different pairs of static

bands gives rise to distinct transport properties.
Figures 2(g) and 2(h) compare transport dynamics in
(0,2) and (0,4) hybrid bands. Evolution in the (0,4) band
leads to dramatically faster long-range transport, due to the
increased group velocity and band curvature. During this
evolution, the ensemble stretches across the entire extent of
the trapping potential, but still returns to the static ground
band at the far edge of the trap.
Diabatic quenches between static bands and hybridized

Floquet bands provide a powerful experimental tool for
dynamical control of transport properties. Quenching back
to the static lattice after a total modulation time tq projects
the Floquet-Bloch state back onto the original static
spectrum. Figure 3 shows the results of such quenched
modulation experiments in which the modulation depth α is
set suddenly to zero after some variable evolution time in
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FIG. 2. Tunable transport in Floquet-Bloch bands. Panels (a)–
(g) show measurements in a (0,2) hybrid band with α ¼ 0.2.
(a) Atomic center-of-mass position versus time for constant drive
frequency ν ¼ 170 kHz and varying initial force, corresponding
to the Bloch frequencies indicated in the legend. In panels (a)–(f),
theoretical expectations from the calculated Floquet-Bloch band
structure are plotted as solid lines, with no fit parameters, and
calculated uncertainty intervals are smaller than plotted points.
(b),(c) Transport period and total transport distance as a function
of initial force. (d) Atomic position versus time for three
modulation frequencies, as indicated in the legend, at a constant
initial force corresponding to a 26.5 Hz Bloch frequency. (e),
(f) Transport period and total transport distance as a function of
drive frequency ν. (g) Time sequence of position-space distribu-
tion in a (0,2) Floquet-Bloch band with ν ¼ 186 kHz and
α ¼ 0.2. (h) Time sequence of position-space distribution in a
(0,4) Floquet-Bloch band with ν ¼ 530 kHz and α ¼ 1. Insets in
(g) and (h) indicate hybridization in the static band structure.
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FIG. 3. Transport control via Floquet quenches with ν ¼
170 kHz and α ¼ 0.4. (a) Quench protocol for modulation times
of 0, 22, and 44 ms. (b) Time sequence of images of atomic
ensemble for the three quench protocols. (c) Relative position
evolution of the atomic ensemble after all quenches. Solid lines
are sinusoidal fits, and estimated uncertainty in measured data is
smaller than plotted points.
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the Floquet-Bloch band. Quenching near the turning points
of the position-space oscillation projects the atomic ensem-
ble back onto the Wannier-Stark localized ground band,
at a position which can vary by thousands of lattice sites
depending on tq. Quenching into an excited static band is
also possible; a recent study demonstrated that a
related technique can be used to experimentally realize a
relativistic harmonic oscillator [33]. The small fraction of
atomic population away from the main ensemble visible in
Fig. 3(b) arises from multiphoton projection to higher
bands during the initial quench. The identical amplitude
and frequency of position-space Bloch oscillations after the
three distinct quench protocols in Fig. 3(c) indicates the
nondissipative nature of quenched Floquet-Bloch transport.
Hybridizing bands of opposite parity gives rise to

qualitatively different phenomena. While opposite-parity
coupling is forbidden at q� ¼ 0 due to the even-parity
nature of amplitude modulation, hybridization at finite
quasimomentum is both allowed and observed. Figure 4
shows the result of (0,1) coupling at q� ≈ 0.66ℏkL, using
amplitude modulation with ν ¼ 56 kHz, α ¼ 0.25, and
V0 ¼ 3.6ER. At this reduced lattice depth, atoms in the
unmodified ground band do not Bloch oscillate but undergo
ballistic transport in the trapping potential, never reaching
the Brillouin zone edge [Fig. 4(a)]. Quenching into the
(0,1) hybrid band causes Wannier-Stark localization due
to Bloch oscillations in the Floquet-hybridized band
[Fig. 4(b)]. Here the opposite curvature of the two static
bands results in a flatter hybrid band with smaller band-
width and local extrema in the dispersion, as shown in
Fig. 4(c). Deviations from unit Landau-Zener fidelity for
Bloch oscillations near the avoided crossings are calculated
to be below a part per million for this drive amplitude and
Bloch frequency, and are not observed.
Strikingly, these oscillations enable direct imaging of the

Floquet-Bloch band structure. A recent experiment [14]
demonstrated that for a constant force, the position evo-
lution of an atomic ensemble undergoing Bloch oscillations
in a static band constitutes a direct image of the energy-
momentum dispersion relation according to the mapping:

E ¼ Fx; q ¼ Ft: ð2Þ

This can be intuitively understood by considering that
the group velocity is equal to both dE=dq and dx=dt.
Figure 4(d) experimentally demonstrates that this mapping
can be generalized to Floquet-Bloch bands by comparing
the center-of-mass motion in a (0,1) hybrid band to the
calculated band dispersion of Fig. 4(c), scaled according to
Eq. (2). There are no fit parameters in this plot, as the force is
measured independently. The close agreement between the
measured atomic position and the band dispersion demon-
strates direct imaging of a hybridized Floquet-Bloch band.
This Floquet-Bloch band image is reminiscent of time-

and angle-resolved photoemission maps of Floquet bands

in laser-driven topological insulators [4]. This analogy
suggests potentially fruitful connections between the
results we present and topics of current interest in con-
densed matter, including the effect of Bloch oscillations
and interband transitions on high-harmonic generation in
crystals and prospects for all-optical band structure
reconstruction in solids [5–11]. Using techniques like those
we present, cold atom quantum simulation experiments
could serve as a complementary tool for exploration of
band dynamics, probing and realizing phenomena at the
edge of current ultrafast experimental capabilities.
The controlled Floquet-Bloch transport dynamics pre-

sented here also open the path to the realization and study
of more complex phenomena, including polychromatic
driving for hybridization of multiple bands at multiple
quasimomenta, Floquet-based creation of topologically
nontrivial bands [34,35], and the controlled introduction
of disorder. The enhanced control of band structure and
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FIG. 4. Imaging a Floquet-Bloch band. (a) Time sequence of
images of atoms in a static band with reduced lattice depth
V0 ¼ 3.6ER, subjected to an initial force per atom corresponding
to a Bloch oscillation frequency of 28.9 Hz. Inset: Calculated band
structure. (b) Evolution in a (0,1) hybrid Floquet-Bloch band with
ν ¼ 56 kHz, α ¼ 0.25, and the same lattice depth as (a). Inset:
Static band structure with rippled lines indicating the resonant
coupling. (c) Calculated quasienergy spectrum in the extended
zone scheme for the (0,1) hybrid band of (b). Color corresponds to
the static band with maximal probability overlap with the Floquet
state according to the band colors in (a). Shaded region corre-
sponds to the mapped part of the Floquet band in (d). (d) Com-
parison of the real-space evolution in (b) to the Floquet spectrum in
(c) according to the mapping of Eq. (2) with no fit parameters.
Measurement uncertainty is smaller than plotted points. The
atomic motion images the Floquet-Bloch band dispersion.
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transport demonstrated here may also be useful for lattice-
based metrology. One possibility along these lines would
be continuously trapped atom interferometry using wave
packets split by a large distance in a ð0; 2nÞ hybrid band for
some n. While this study has focused on coherent dynamics
in the absence of interaction-induced dephasing, the intro-
duction of tunable interatomic interactions would open up a
broader array of possibilities in many-body Floquet engi-
neering; some of these are explored in recent work using
the same apparatus [36].
In summary, we have demonstrated tunable coherent

control of long-range quantum transport in hybridized
Floquet-Bloch bands. We have used hybridization of
various pairs of four separate static bands at varying
quasimomenta to realize rapid long-distance transport of
a Bose condensate, switchable Wannier-Stark localization,
and direct imaging of a hybrid Floquet-Bloch band.
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