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We consider a collective quantum spin s in contact with Markovian spin-polarized baths. Using a
conserved superoperator charge, a differential representation of the Liouvillian is constructed to find its
exact spectrum and eigenmodes. We study the spectral properties of the model in the large-s limit using a
semiclassical quantization condition and show that the spectral density may diverge along certain curves in
the complex plane. We exploit our exact solution to characterize steady-state properties, in particular at the
discontinuous phase transition that arises for unpolarized environments, and to determine the decay rates of
coherences and populations. Our approach provides a systematic way of finding integrable Liouvillian
operators with nontrivial steady states as well as a way to study their spectral properties and eigenmodes.
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Understanding the nonequilibrium dynamics of a quan-
tum system coupled to its environments is of central
importance for the possible improvement of current tech-
nologies such as nuclear magnetic resonance, electronic
and optical spectroscopy, and inelastic neutron scattering.
It is also a key ingredient for a coherent manipulation
of quantum states, for classical and quantum information
processing, sensing, and metrology. However, modeling the
open quantum dynamics of interacting systems remains a
major theoretical challenge.
In most cases, the problem can be reduced to the study

of a subsystem of the full system for which the reduced
density matrix evolves under an effective Liouvillian
operator, ∂tρ ¼ LðρÞ. When the coupling to the environ-
ment is weak and its memory times are short, the
Liouvillian becomes of the Lindblad form [1]:

L ¼ LH þ
X
l

DWl
; ð1Þ

where LHðρÞ ¼ −i½H; ρ� corresponds to the unitary evolu-
tion under the Hamiltonian H, and DWl

ðρÞ ¼ WlρW
†
l −

1
2
W†

lWlρ − 1
2
ρW†

lWl to the contribution of each dissipative
channel by the action of the jump operatorWl. In this form
the problem becomes amenable to a number of standard
analytic and numeric methods, such as semiclassical, mean-
field, or perturbative approximations, Bethe ansatz, exact
diagonalization, tensor network methods, etc.
Remarkably, a number of exact results for model systems

have been recently constructed [2–15]. For interacting
models, there are two known routes to systematically
obtain exact solutions: (i) mapping the Liouvillian to a
non-Hermitian Hamiltonian that acts on two copies of a
system for which an exact solution of the joint problem
is known [10–13]; or (ii) using a matrix-product operator

ansatz to identify the algebraic structure of the steady state
[4–8]. All known examples of (i) use Hermitian jump
operators, which leads to amaximallymixed and featureless
steady state but allows us to study the spectrum that
determines thedynamics.On theotherhand,method (ii) only
provides a solution for the steady state. The spectrum and
structure of the other eigenmodes remain an open problem.
Exact solutions for both the spectrum and the eigenmodes,
which support a nontrivial steady state, are only known for
quadratic bosonic or fermionic models [2,3].
In this Letter, we consider the dissipative dynamics of a

quantum spin s, for large s, under a local field h

H ¼ −hSz ð2Þ

in contact with Markovian spin-polarized baths character-
ized by the following jump operators

W0 ¼
ffiffiffiffiffi
Γ0

p
Sz; W� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ
ð1 ∓ pÞ

2

r
S�; ð3Þ

where Γ0 characterizes the decoherence rate and Γ½ð1∓pÞ=
2� are the spin-injection and subtraction rates in a reservoir
with a net polarization p. Collective spin models with
Markovian dissipation, as the one above, have been used
to describe recently observed dissipative phase transitions in
cavity electrodynamics [16–18] as well as to model super-
conducting qubits [19] and magnetic atoms on metallic
surfaces [20,21]. We show that this model admits an exact
solution for the full Liouvillian spectrum and eigenmodes
while, at the same time, it supports a nontrivial steady state.
This solution allows us to determine the spectral density
in the large s limit and to characterize the steady state,
which undergoes a phase transition where the magnetization
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changes discontinuously. This method is particularly useful
to compute the decay rates of coherences and populations
at the phase transition point where perturbative 1=s expan-
sions fail.
A collective spin is described by a single conjugate pair

of variables. Therefore, quantum Hamiltonians of a single
spin s are integrable [22–25]. Superoperators, needed to
describe dissipative dynamics, act on a space that is
isomorphic to two copies of the initial Hilbert space.
This effective two-variable problem seems in general not
to be integrable. The construction of our exact solution
crucially uses the fact that L commutes with a conserved
superoperator Qz, that, in the present case, is simply given
by QzðρÞ ¼ Szρ − ρSz. This reduces the eigenvalue prob-
lem to that of one effective degree of freedom and general-
izes to cases where Qz is more complex.
Collective spin models with Markovian dissipation have

been considered to describe spontaneous emission of
ensembles of two-level atoms [26–31,31–34]. Recently,
they were also used to model tunneling spectroscopy of
atomic magnets deposited on metallic surfaces in the large
bias regime [21,35]. For some remarkable cases [28,36],
the steady state density matrix can be exactly constructed.
Otherwise, when no such solution is known, the problem is
still amenable to semiclassical methods [30–32,35]. These
studies showed that collective spin models host a number of
phases with qualitatively different steady state properties
and relaxation regimes. Nevertheless, to our knowledge, an
exact solution of the eigenvalue problem for the Liouvillian
operator was not known to date.
The Hilbert space of the collective spin is spanned by the

Dicke states jmi,m∈ f−s;−sþ1;…;sg, obeying S�jmi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs ∓ mÞðs�mþ 1Þp jm� 1i, Szjmi ¼ mjmi. An eigen-
mode ρ of L, such that LðρÞ ¼ Λρ, also belongs to an
eigenspace of QzðρÞ ¼ qρ characterized by the eigenvalue
q and spanned by the basis jqþ κ − sihκ − sj, with
κ ∈ f0; 1;…; 2s − qg. Thus, q can be seen as a label of a
collection of finite chains and κ as the coordinate along each
chain that has a dimension of 2s − qþ 1. The operators
S−ρSþ and SþρS− correspond to nearest neighbor hoppings
(κ → κ − 1 and κ → κ þ 1) in each finite chain.
This construction resembles that of an isolated spin s for

which a representation based on spin coherent states can be
used to expose the integrable structure of the problem
[23,24]. The latter relies on the fact that, in spin coherent
states basis, a given state is a polynomial of a single
variable on which the Hamiltonian acts as a differential
operator. Here, we proceed in a similar manner, however
not relying on the SUð2Þ structure to define the coherent
states. Instead, we define a family of “coherent” operators
within the subspace q by

σðqÞðzÞ ¼
X2s−q
κ¼0

cq;κzκjqþ κ − sihκ − sj; ð4Þ

where the coefficients

cq;κ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðqþκÞ!ð2s−κÞ!=κ!ð2s−q−κÞ!�½ð2s−qÞ!=ð2sÞ!ðqÞ!�

p

were fixed by requiring that the action of S−ρSþ and
SþρS− can be written as differential operators (see below)
and that both operators are extensive in s. The inner
product of a generic density matrix with a coherent

operator, ΨðqÞ
ρ ðz̄Þ ¼ trf½σðqÞðzÞ�†ρg, defines a set of repre-

sentatives of ρ in the space of polynomials of z̄ of the order
2s − q. In this representation, a superoperatorO acting on ρ
translates to a differential operator

ΨðqÞ
OðρÞðz̄Þ ¼ Oðz̄; ∂ z̄ÞΨðqÞ

ρ ðz̄Þ: ð5Þ

For the diagonal superoperators, i.e., whose action on
basis states are of the form Oðjqþ κ− sihκ− sjÞ ¼
oðκÞjqþ κ− sihκ− sj, we can simply write ΨðqÞ

OðρÞðz̄Þ¼
oðz̄∂ z̄ÞΨðqÞ

ρ ðz̄Þ. The action of the two nondiagonal operators
in Eq. (1), i.e., S−ρSþ and SþρS−, can be obtained by a
straightforward calculation yielding

ΨðqÞ
S−ρSþðz̄Þ ¼ ∂ z̄ð2sþ 1 − z̄∂ z̄ÞΨρðz̄Þ; ð6Þ

ΨðqÞ
SþρS−ðz̄Þ ¼ z̄ð2s − q − z̄∂ z̄Þðz̄∂ z̄ þ 1þ qÞΨρðz̄Þ: ð7Þ

In this representation, the eigensystem equation of L is
given by LðqÞðz̄; ∂ z̄ÞΨðqÞðz̄Þ ¼ ΛΨðqÞðz̄Þ with

LðqÞðz̄;∂ z̄Þ¼ sP0;0ðz̄ÞþP0;1ðz̄Þ

þ
�
P1;0ðz̄Þþ

1

s
P1;1ðz̄Þ

�
∂ z̄þ

1

s
P2ðz̄Þ∂2

z̄ ð8Þ

where

P0;0ðz̄Þ¼
q
2s
f−2ihþΓ½ðq=2sÞ−1�½ðp−1Þz̄þ1�−Γ0ðq=2sÞg;

P0;1ðz̄Þ¼
1

2
Γfp½ðq=2sÞ−1Þðz̄−1Þþ½1−ðq=2sÞ�z̄−1g;

P1;0ðz̄Þ¼
1

2
Γfðp−1Þ½2ðq=2sÞ−1�z̄2þpþ2½ðq=2sÞ−1�z̄þ1Þg;

P1;0ðz̄Þ¼
1

2
Γðp−1Þðz̄−1Þz̄ and

P2ðz̄Þ¼
1

4
Γz̄ðz̄−1Þ½1þp−ð1−pÞz̄�

Considering the factorizable form of ΨðqÞðz̄Þ ¼
C
Q2s−q

i¼0 ðz̄ − z̄iÞ, with C a nonzero constant, and that
the roots z̄i are nondegenerate, we can expand the eigen-
value equation around z̄i, obtaining a set of Bethe-like
equations [37]
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X
j≠i

1

z̄i − z̄j
¼ ð1 − pÞðq

2
þ 1Þ

1þ p − ð1 − pÞz̄i
þ

q
2

1 − z̄i
þ s
z̄i
; ð9Þ

which admit 2s − qþ 1 sets of solutions, one for each
eigenmode of L, each determined univocally by 2s − q
roots. Figure 1 shows the spectrum and the root structure
for some of the eigenmodes. The spectrum is constituted of
two regions with distinct eigenvalue distribution. The two
regions are separated by a line where eigenvalues seem
to accumulate. The regular spectral structure observed in
region I near Λ ¼ 0 has been identified in Ref. [35] using a
Holstein-Primakoff transformation to a bosonic system and a
subsequent perturbative expansion in 1=s. This approach is
only able to capture eigenvalues of order Oðs0Þ and thus
misses the spectral structure away from the origin.
The root structure of the eigenmodes, shown as insets in

Fig. 1, changes depending on which region the correspond-
ing eigenvalues belong to. In region I, the excitation
number of the eigenmode can be obtained by counting
the number of roots nI that lie within the two disconnected
segments on the real axes depicted schematically as thick
black lines in Fig. 2(upper panel). In region II, the
excitation number is given by 2s − q − nII, where nII is
the number of roots that lie along a circle around the origin
depicted as a gray line.
In order to study the spectrum in the large s limit it is

useful to derive a Riccati-like equation for the logarithmic

derivative of Ψρðz̄Þ: Gðz̄Þ ¼ 1=ð2s − qÞ∂z ln Ψρðz̄Þ ¼
1=ð2s − qÞPiðz̄ − z̄iÞ−1. For this quantity, the contour
integral around a closed path γ,

Z
γ
dz̄Gðz̄Þ ¼ 2πi

2s − q
n; ð10Þ

is quantized, with n being the number of zeros of Ψρðz̄Þ
encircled by γ. This quantization condition can be used to
fix the real part of Λ. The imaginary part is fixed by the
sector of Qz: ImðΛ=sÞ ¼ −qh.
Setting Λ ¼ sðλ − i2hxÞ and q ¼ 2sx, where λ ∈ R and

x ∈ ½0; 1� are of order zero in s, and expanding Gðz̄Þ ¼
G0ðz̄Þ þ 1

s G1ðz̄Þþ;…, we obtain a set of equations that can
be solved hierarchically for each power of s. The leading
order term yields an algebraic relation for G0ðz̄Þ:

λþ i2hx ¼ P0;0ðz̄Þ þ 2ð1 − xÞP1;0ðz̄ÞG0ðz̄Þ
þ 4ð1 − xÞ2P2ðz̄ÞG2

0ðz̄Þ: ð11Þ
The solution can be put in the form G0ðz̄Þ ¼
½Qðz̄Þ � ffiffiffiffiffiffiffiffiffiffiffi

Wðz̄Þp �=Dðz̄Þ, where Qðz̄Þ and Dðz̄Þ are
second- and third-order polynomials in z̄ and Wðz̄Þ ¼Q

4
k¼1 ðz̄ − r−1k Þ is a fourth order with polynomial roots

r−1k . The structure of these roots determines the boundaries
of the branch cuts of G0ðz̄Þ. The cuts can be seen as the
results of the accumulation of the poles z̄i along certain lines
in the complex plane. Accidents in the spectrum, such as
spectral boundaries and lines where the spectrum changes
nature, arise when two or more of the roots meet, in which

FIG. 1. Spectrum of the Liouvillian computed for h ¼ 1,
Γ ¼ 1.2, p ¼ 0.9, Γ0 ¼ 0.2, and s ¼ 17. The eigenvalues cor-
responding to q ¼ 6 are shown in red. The gray curves are
analytical predictions fλk½x ¼ ImΛ=ð2hsÞ� ¼ ReΛ=sg for the
edges of the spectrum for s → ∞. Left insets: Root structure
of the eigenmodes. The (inverse) roots corresponding to some of
the eigenmodes are plotted in the complex plane—black points.
The branch points rk¼1;…;4 of G0 are depicted as orange crosses.

FIG. 2. Upper panel: contours of integration taken to obtain the
quantization condition in region I and II of the spectrum. Lower
panel: Comparison between the numerics (red dots for s ¼ 17,
q ¼ 8, and blue dots for s ¼ 50, q ¼ 23) and the leading order
analytic prediction (crossings between the horizontal red or blue
lines with the black curve) computed for h ¼ 1, Γ ¼ 1.2,
p ¼ 0.9, Γ0 ¼ 0.2, and x ¼ q=2s ≃ 0.23.
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case ∂ z̄Wðz̄iÞ ¼ 0. This condition is used to determine the
curves seen in Fig. 1, which can be parametrized as λkðxÞ.
The roots rk are depicted as orange crosses on the inset of
Fig. 1 for some illustrative eigenstates.
At leading order, the quantization condition, given byR

γ dz̄G0ðz̄Þ ¼ 2π i n=ð2s − qÞ, fixes the value of λ as a
function of the number of roots inside γ. For the particular
example given here we choose γ as in Fig. 2(upper panel).
In this way the nth eigenmode has exactly n roots inside
the cut. A comparison between the values of λ obtained
imposing this leading order quantization condition and the
numerically exact results obtained by exact diagonalization
of the Liouvillian is given in Fig. 2(lower panel).
The density of eigenmodes as a function of λ defined as

DxðλÞ ¼ ½ð1 − xÞ=2πi�∂λ

R
γ dz̄G0ðz̄Þ, normalized such thatRmaxkλkðxÞ

minkλkðxÞ dλDðλÞ ¼ 1 − x is given by particularly simple

expressions

DI
xðλÞ ¼

4

πΓðpþ 1Þ
K½ðr1−r2Þðr3−r4Þðr3−r2Þðr1−r4Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 − r3Þðr1 − r4Þ

p ð12Þ

and

DII
x ðλÞ ¼

2

πΓðpþ 1Þ
K̃½ðr2−r3Þðr1−r4Þðr1−r3Þðr2−r4Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr1 − r3Þðr4 − r2Þ

p ð13Þ

in terms of the complete elliptic integral of the first kind
KðzÞ ¼ R π=2

0 ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zsin2t

p
Þdt, and where K̃ðzÞ ¼ KðzÞ −

2iKð1 − zÞ is obtained from KðzÞ by analytic continuation,
changing its branch cut from ð1;∞Þ to ð−∞; 1Þ. The
density of eigenvalues, DðΛ=sÞ ¼ D−ðImΛ=2hsÞðReΛ=sÞ,
in the complex Λ=s plane is depicted in Fig. 3. The
logarithmic divergence of D along the line separating
regions I and II signals an accumulation of eigenvalues
at these points. The inset, in the upper-left part of Fig. 3,

shows two cuts at fixed ImΛ=s: in the upper case D has
support in I and II and a divergence seen when the
separating line is crossed; in the lower, D has support
only in II. Note that for the point p ¼ 0, the region I
vanishes. In this special case (see below) there is a square-
root divergence of D for Λ=s → 0 instead of the logarith-
mic accumulation observed for finite p.
Let us now turn to the steady state properties. The steady

state density matrix ρ0 corresponds to the zero eigenvalue
of the Liouvillian (Λ0 ¼ 0) and belongs to the sector q ¼ 0,
since only this sector contains tracefull components. Within
this sector cq¼0;κ ¼ 1, therefore, for a density matrix ρ ¼P

2s
κ¼0 wκjκ − sihκ − sj in this sector, the corresponding

polynomial is simply given by Ψð0Þ
ρ ðz̄Þ ¼ P

2s
κ¼0 wκzκ.

This implies that Ψð0Þ
ρ ðz̄ ¼ 1Þ ¼ tr½ρ�. The steady state

polynomial representation can be obtained by solving

the differential equation Lð0Þðz̄; ∂ z̄ÞΨð0Þ
ρ0 ðz̄Þ ¼ 0, imposing

that the solution is a polynomial in z̄ normalized such that

Ψð0Þ
ρ ð1Þ ¼ 1. In this way we obtain

Ψð0Þ
ρ0 ðz̄Þ ¼

zp − 1

z2sþ1
p − 1

ðz̄zpÞ2sþ1 − 1

z̄zp − 1
ð14Þ

with zp ¼ 1−p
1þp. It worth noting that this solution is equiv-

alent to taking wκ ∝ zκp. With the explicit expression of the
steady state we can now compute its properties. Fig. 4 (left
panel) shows the mean value of

hSzi ¼ Ψð0Þ
Szρ0

ðz̄ ¼ 1Þ ¼ ð2sþ 1Þ
1 − z2sþ1

p
−

1

1 − zp
− s ð15Þ

as a function of p together with numerical data obtained by
exact diagonalization of the Liouvilian. At the thermody-
namic limit there is a discontinuous transition in the spin
polarization at p ¼ 0, where the fluctuations ΔS2z ¼ hS2zi−
hSzi2, given at the thermodynamic by lims→∞ΔS2z ¼
ð1 − 1=p2Þ=4, diverge as ΔS2zðp ¼ 0Þ ¼ sðsþ 1Þ=3. This
can also be seen in the steady state entropy, defined as
SE ¼ −tr½ρ0 ln ρ0�, that can also be simply computed

FIG. 3. Density of eigenvalues of the Liouvillian in the
thermodynamic limit, D, plotted for h ¼ 1, Γ ¼ 1.2, p ¼ 0.9,
Γ0 ¼ 0.2, and s ¼ 17. Inset: cut of the 3D plot for Λ=s ¼ −0.3
(upper) and Λ=s ¼ −1.5 (lower).

FIG. 4. Steady state magnetization along the z direction (left)
and entropy (right) of the nonequilibrium steady state as a
function of p for h ¼ 1, Γ ¼ 1.2, p ¼ 0.9, Γ0 ¼ 0.2, and several
values of s. Dots are numerical data obtained by exact diago-
nalization and lines are analytic results.
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SE¼ log
�
z2sþ1
p −1

zp−1

�
þ zpf½1−2sðzp−1Þ�z2sp −1g logðzpÞ

ðzp−1Þðz2sþ1
p −1Þ :

ð16Þ
As show in Fig. 4(cental panel) this quantity has a
maximum for p ¼ 0 where the steady state is proportional
to the unit matrix, for which case SE ¼ ln ð2sþ 1Þ is
maximal. This is a consequence of the fact that, at this
point, the jump operators can be taken to be Hermitian and
thus the identity belongs to the null space of the Liouvillian.
Away from p ¼ 0, the thermodynamic limit value of SE is
finite and vanishes for p ¼ �1 were the steady state is pure
and corresponds to that of a fully polarized spin.
Another important quantity is the spectral gap given

by the first non-zero eigenvalue Δ ¼ −Reðminn≠0ΛnÞ. Δ
dominates the asymptotic long time decay of the dynamics
to the steady state. For p ≠ 0 this quantity attains a finite
value in the thermodynamic limit, given by lims→∞Δ ¼
jpjΓ=2, which can be computed by the method of Ref. [35].
For p ¼ 0, Δ vanishes in the thermodynamic limit. This is
expected since at this point region I vanishes and the
spectrum is of a different nature. In order to gain some
insight to the spectrum at this special point we look for

solutions of the eigenvalue condition Lð0Þðz̄; ∂ z̄ÞΨð0Þ
ρn ðz̄Þ ¼

Λð0Þ
n Ψð0Þ

ρn ðz̄Þ at p ¼ 0 imposing the eigenvector to be a
polynomial of order at most 2s in z̄. Remarkably, at this
special point the eigenvalue problem can be reduced to the
solution of the hypergeometric differential equation and we

have Ψð0Þ
ρn ðz̄Þ ¼ ðz̄− 1Þn2F1½nþ 1; n − 2s; 2ðnþ 1Þ; 1− z̄�,

with 2F1 the hypergeometric function, and

Λð0Þ
n ¼ −

Γ
4s

nðnþ 1Þ ð17Þ

with n ∈ N0. The same procedure for sectors q ¼ �1

yields Λð�1Þ
n ¼∓ ih− ½ΓþΓ0þΓnðnþ3Þ�=ð4sÞ. Therefore,

we find that the timescales dominating the decay of

the populations and the coherences, respectively, T1 ¼
jReΛð0Þ

1 j−1¼ 2s=Γ and T2 ¼ jReΛð1Þ
0 j−1 ¼ 4s=ðΓþ Γ0Þ,

diverge with s.
In conclusion, we provide an exactly solvable case of a

dissipative system with a nontrivial steady state where the
spectral properties and eigenmodes can be systematically
studied in the semiclassical regime of large spin. The
example provided in this Letter explicitly shows that
conserved superoperator charges can be used to construct
exact solutions of integrableLiouvillians in the samemanner
conserved quantities do for integrable Hamiltonians. This
construction provides another route for finding exactly
solvable models of dissipative open systems. We hope that
our approach can be generalized to other models as a variant
of theWentzel-Kramers-Brillouinmethod for open systems,
as well as to few and many-body problems where one needs
to implement a complete set of conserved supercharges.
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