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Because of the presence of phonons, many-body localization (MBL) does not occur in disordered solids,
even if disorder is strong. Local conservation laws characterizing an underlying MBL phase decay due to
the coupling to phonons. We show that this decay can be compensated when the system is driven out of
equilibrium. The resulting variations of the local temperature provide characteristic fingerprints of an
underlying MBL phase. We consider a one-dimensional disordered spin chain, which is weakly coupled to
a phonon bath and weakly irradiated by white light. The irradiation has weak effects in the ergodic phase.
However, if the system is in the MBL phase, irradiation induces strong temperature variations despite the
coupling to phonons. Temperature variations can be used similar to an order parameter to detect MBL
phases, the phase transition, and a MBL correlation length.
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A quantum many-body system subjected to strong
disorder can be many-body localized and thus fail to
thermalize when evolving under its own dynamics [1,2].
This phenomenon has attracted a lot of interest as an
example of a novel dynamical state of matter. In the case of
a fully many-body localization (MBL) state, where all the
many-body eigenstates of the Hamiltonian are localized,
the system is characterized by an extensive set of local
integrals of motion [3–10].
The local conservation laws persist without fine-tuning,

which makes MBL more robust than conventional inte-
grability. Like integrable models, however, many-body
localization cannot survive even the weakest static coupling
of the system to an external bath of delocalized excitations
[11–24]. Any such coupling would lead to thermalization;
therefore all direct experimental demonstrations of MBL so
far have been achieved with ultracold atomic systems
[25–27] as well as trapped ions [28], which can be
extremely well isolated from the environment. In solids,
by contrast, the electronic degrees of freedom are inevitably
coupled to phonons and the ensuing thermal state shows no
sign of the local integrals of motion.
In this Letter, we argue that the local integrals of

motion of an electronic system can be “reactivated” by
driving the system to a nonequilibrium steady state. In
essence, the driving counters the relaxation with the
phonon bath, giving rise to a new steady state in which
the value of the local integrals of motion is set by a local
balance between the phonons and the drive. In the limit of
weak drive and weak coupling to phonons, this scheme
allows us to make a sharp distinction between the steady
states obtained with the dominant Hamiltonian in the
MBL phase compared to an ergodic one, as demonstrated
in Fig. 1.

In previous work, two of us developed a formalism for
computing the steady-state density matrix of integrable
systems subject to weak driving and coupling to baths
[29–31], which is also applicable here. In the limit of weak
driving steady-state expectation values can be approxi-
mately computed using a generalized Gibbs ensemble
adjusted to expectation values of the integrals of motion,
determined by rate equations. Figure 1 shows how this
scheme plays out in the MBL phase compared to a
conventional thermalizing phase. In the fully MBL system,
there is always a set of integrals of motion related to the
local energy density. Hence driving the system gives rise to
widely varying local temperatures. In an ergodic system, on
the other hand, only the global energy is conserved; hence
when it is weakly driven the system equilibrates to a
thermal state characterized by a single temperature.
In a similar setup with a disordered system weakly

coupled to a bath and a monochromatic drive, Refs. [32,33]
studied optimization of nuclear polarization. Nuclear
polarization is optimized when the underlying system is
close to the localization transition. In agreement with our
results, they concluded that an equilibrium description in
terms of spin temperature can be applied only in the ergodic
phase. Persistent signatures of MBL have been observed
also in system with Markovian dissipation where non-
Hermitian Lindblad operators simultaneously drive and
couple the system to baths [34]. Also, Ref. [35] has
previously proposed a different approach to detect indirect
signatures of many-body localization in electron systems.
The emphasis of that work is on signatures of a finite
temperature localization transition that persist despite the
broadening of the transition due to coupling to phonons.
Recently, possible indications of the proximity to such a
transition were seen in a disordered InO film [36]. These
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effects are, however, indirect and may not be unique for
MBL. The effects we discuss in this Letter, by contrast,
provide a direct unambiguous signature of MBL.
Our goal is to describe a strongly disordered, interacting

electron system in a solid weakly coupled to phonons
and irradiated by light, H ¼ Hf þH0

p þHfp þHd.
To simplify the numerical analysis, we consider a one-
dimensional model of spinless fermions with periodic
boundary conditions at half-filling

Hf ¼ t̃
XN
i¼1

ðc†i ciþ1 þ c†iþ1ciÞ þ Vini þ Uniniþ1; ð1Þ

which is related to the Heisenberg model of spins via
Jordan-Wigner transformation. We use interaction strength
U ¼ 2 corresponding to the isotropic point of the
Heisenberg model. The lattice constant a is set to a ¼ 1
as well as t̃ ¼ 1. The random local potential Vi is
drawn from a box distribution, Vi ∈ ½−h; h�. This model
and its variants [37–43] have been studied extensively
and are known to show an (infinite temperature) MBL
transition at a critical disorder strength of about h ≈ 7
(see, e.g., [38,39]).

The fermions interact with three dimensional acoustic
phononsH0

p ¼ P
ωqa

†
qaq with dispersionωq ¼ vjqj; v ¼ t̃

which couple to the electrons through the hopping matrix
element

Hfp ¼ ϵp
X
qx

Z
dq2⊥
ð2πÞ2 ðaq þ a†qÞ iqxffiffiffiffiffiffiffiffi

2ωq
p Hqx;

Hqx ¼
1ffiffiffiffi
N

p
X
j

t̃ eiqxjðc†jþ1cj þ c†jcjþ1Þ: ð2Þ

The dimensionless parameter ϵp controls the strength of
electron-phonon interaction. Because of periodic boundary
conditions in x, the (dimensionless) momenta take quan-
tized values qx ¼ ð2π=NÞnx, while the perpendicular
momenta are continuous. The three-dimensional phonons
act as a thermal bath with a fixed temperature Tp.
At the same time, the system is driven out of equilibrium

due to irradiation by white light arising, e.g., from a light
bulb with a very high temperature Td ≫ t̃; h; Tp. The light
couples to the current operator

Hd ¼ ϵdAðtÞ
X
i

it̃ðc†iþ1ci − c†i ciþ1Þ: ð3Þ

Here the dimensionless vector potential is given by ϵdAðtÞ.
We assume that AðtÞ is a delta-correlated classical field
hAðtÞAðt0Þi ¼ 2πδðt − t0Þ and ϵd parametrizes the ampli-
tude of the electric fields. Note that a δ-correlated vector
potential corresponds to the electric field correlation
hEωEω0 i ∼ δðωþ ω0Þω2 expected for blackbody radiation
for ω ≪ Td.
We would like to obtain the steady-state of the driven

interacting system in the limit of weak coupling to phonons
and light. Formally, we first take the limit t → ∞ and
afterwards the limit ϵp, ϵd → 0. In this sequence of limits,
the steady-state density matrix of the fermionic system is
given by

lim
ϵp;ϵd→0

lim
t→∞

ρðtÞ ¼
X
n

pnjnihnj; ð4Þ

where jni are the exact many-particle eigenstates of Hf.
The probabilities pn depend sensitively on the couplings to
phonons and to light, which determine the transition rates
Γmn ¼ Γp

mn þ Γd
mn from state jni to state jmi. The proba-

bilities pn are computed from the steady-state dpn=dt ¼ 0
of the rate equation

d
dt

pn ¼
X
m

Γnmpm − Γmnpn: ð5Þ

The transition rates are derived using Fermi’s golden; see
Supplemental Material [44] for concrete expressions.

(a)

(b) (c)

FIG. 1. (a) Profile of local temperatures in system coupled to a
phonon bath at temperature Tp and driven weakly by white light.
The temperature variations are large in the MBL phase (red
circles), while they are vanishing in the ergodic phase (black
squares). (b), (c) Fluctuations of the temperature can be used as an
effective order parameter to detect a MBL transition. In the limit
of vanishing coupling to the phonons and the drive, ϵd, ϵp → 0,
while ϵd=ϵp → const, temperature fluctuation only arises in the
MBL phase. Both a smooth transition (b) or a jump at the critical
point (c) are consistent with our results obtained on small
systems. Finite coupling, ϵd, ϵp > 0, is expected to smoothen
the transition into a crossover.
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Properties of the obtained steady state are studied
through the behavior of local temperatures at different
sites. To define local temperatures out of equilibrium, we
directly model a “thermometer” by infinitesimally coupling
a bosonic bath with temperature Tj to the tunneling term
c†jcjþ1 þ c†jþ1cj. The temperature Tj is determined from
the condition that the energy current to the thermometer
vanishes (see Supplemental Material for details [44]). Note
that out of equilibrium the precise value of Tj depends on
the type of thermometer one is using. However, the
qualitative difference in behavior between the ergodic
and MBL phases is not sensitive to such details.
Experimentally, there are various methods to measure local
temperatures, including the measurement of thermoreflec-
tance [48], scanning thermal microscopy [49], and fluo-
rescent microthermal imaging [50,51]. Finally, scanning
light sources [52] for local Raman spectroscopy [53] with
resolution of 10–20 nm can be used to obtain local
temperatures by comparing Stokes and anti-Stokes lines
of suitable transitions.
Figure 1(a) shows the local temperature profile calcu-

lated for one disorder configuration and a fixed ratio
ðϵd=ϵpÞ2 ¼ 0.3 in the limit ϵd, ϵp → 0. Deep in the ergodic
phase, the fluctuations of the local temperature are very
small, whereas they become large in the MBL regime. We
propose to use this as an experimental probe of MBL on
solids.
We now turn to quantify the magnitude of local temper-

ature fluctuation. For each disorder configuration n we
determine the deviation of the local temperature Tn;i from
the average temperature of the chain Tn ≡ ð1=NÞPN

i¼1 Tn;i,
that is, δTn;i ¼ Tn;i − Tn. The average fluctuation over all
sites and disorder configurations is calculated from the

variance of δTn;i, δT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hδT2

n;ii
q

. The average temperature

is T̄ ≡ hTn;ii. In our numerical results, we average over
M ¼ 500 random disorder configurations.
We expect that in the thermodynamic limit δT ¼ 0 in the

ergodic phase, but is nonvanishing in the MBL phase
[Fig. 1(b)]. Thus the temperature fluctuation serves similar
to an order parameter of the MBL phase and is expected to
grow with a universal exponent α upon entering the phase

lim
N→∞;ϵd;ϵp→0

δT
T̄

∼
�
0 for h < hc
ðh − hcÞα for h > hc:

ð6Þ

Here the limit is taken with ϵd=ϵp ¼ const and hc is the
critical disorder strength characterizing the MBL transition.
Note that δT=T̄ could also jump, i.e., with α ¼ 0 at the
transition.
The vanishing of temperature variations for h < hc

follows from the fact that in the thermodynamic limit with
ϵd, ϵp → 0 ergodic systems equilibrate to a thermal state
characterized by a unique temperature (see Supplemental

Material for details [44]). For h > hc, in contrast, an
extensive set of local conservation laws prohibits equili-
bration, and we expect a highly nonthermal state arising
from the solution of rate equations for which fluctuation
dissipation relations are violated, leading to strongly
fluctuating local temperatures.
Our numerical calculations are done on a finite size

system with up to 12 sites. In this case, the sharp phase
transition gives way to a smooth crossover [Fig. 2(a)]. We
fix the phonon temperature to Tp ¼ 10; see Supplemental
Material for a discussion of the dependence on Tp [44].

(a)

(b)

(c)

FIG. 2. (a) Average fluctuation of local temperatures δT
normalized by the average temperature T̄ as function of disorder
strength h for the system sizes N ¼ 6, 8, 10, 12. (b) The
logarithmic plot shows that δT=T̄ drops exponentially in system
size in the ergodic phase, Eq. (7). The N dependence for small h
is shown in the inset. (c) A data collapse is obtained by rescaling
using hc ¼ 7, ν ¼ 2.6, β ¼ 0. Inset: Same scaling plot on a linear
scale. Parameters: Tp ¼ 10; U ¼ 2; ðϵd=ϵpÞ2 ¼ 0.3.
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In the ergodic phase, we find that δT drops as a function of
system size in a manner consistent with exponential
dependence [Fig. 2(b)],

δT
T̄

∼ e−L=ξeðhÞ: ð7Þ

The decay length ξeðhÞ grows rapidly on approaching the
MBL transition; see Fig. 3; hence we associate it with the
correlation length that diverges at the critical point as
ξe ∼ ½1=ðhc − hÞν�.
It is instructive to apply a finite size scaling analysis.

Figure 2(c) shows a scaling collapse of the data assuming
a universal scaling function ðδT=T̄Þ ¼ L−βfðL1=νδhÞ,
δh ¼ h − hc. This scaling function also implies that
ðδT=T̄Þ ∼ ðh − hcÞβν on crossing the transition. To obtain
collapse, we assumed hc ¼ 7 and fitted ν ≈ 2.6, β ≈ 0.
Latter values are consistent also with the fit to ξeðhc − hÞ
(see inset of Fig. 3). However, we cannot precisely
determine hc from our data since reasonable data collapse
can be obtained within a range of parameters, giving rise to
crude estimates hc ≈ 6.5� 1 (consistent with exact diag-
onalization results, e.g., [39]), ν ¼ 2.5� 0.5, and
β ¼ 0.08� 0.08. It is interesting that we find a value
of ν consistent with the Chayes-Harris bound [54–56],
ν > 2=d, where d is the spatial dimension. This is in
marked contrast with results of exact diagonalization
studies, which obtain ν ≈ 1, e.g., [39]. Rather, the result
is closer to the renormalization group approaches [57,58],
which obtain ν ≈ 3.3.
On the MBL side, we expect that δTj fluctuates on

short scales associated with the localization length ξl.
The correlation function CðδÞ ¼ hðTn;i − T̄ÞðTn;iþδ − T̄Þi
is plotted in Fig. 4. We determine ξl from the fit CðδÞ∼
e−δ=ξlðhÞ þ e−ðN−δÞ=ξlðhÞ.

ξlðhÞ is shown in Fig. 3 together with ξeðhÞ obtained
from Eq. (7). ξlðhÞ grows with decreasing disorder, but
unlike ξeðhÞ on the ergodic side, it does not seem to diverge
at the critical point. This behavior is consistent with other
numerical results and renormalization group approaches
[57,58], which also fail to extract a diverging localization
length from the behavior of typical physical quantities.
Indications of a diverging localization length manifest only
when considering special quantities, whose average is
sensitive to the appearance of rare thermalizing clusters
that ultimately trigger the phase transition to the ergodic
phase [57].
The analysis discussed above is rigorously valid in the

limit ϵp, ϵd → 0. At finite ϵp and ϵd nonzero fluctuations δT
are expected also in the ergodic phase. Deep in the ergodic
phase, δT can be calculated from a straightforward hydro-
dynamic approach describing the interplay of heat con-
duction and local heating and cooling by light and phonons,
respectively (see Supplemental Material [44]). From this
analytic approach, we obtain in d dimensions deep in the
ergodic phase

δT ∼
1

κ̄d=4

�
ϵd
ϵp

�
2

ϵd=2p ; ð8Þ

where κ̄ is the (average) heat conductivity. As expected, for
ϵp, ϵd → 0 at fixed ratio ϵd=ϵp, δT vanishes. Remarkably,
the same hydrodynamic approach predicts that δT is of
order 1 in the MBL phase (see Supplemental Material [44]).
As δT is finite in the ergodic phase for finite ϵp;d, the

sharp transition in δT expected for ϵd, ϵp → 0, Eq. (6), will
be broadened for finite ϵd, ϵp (see Fig. 1). In an actual solid-
state experiment, one easily controls ϵd by changing the
radiation density but not the strength of phonon coupling.
A lowering of temperature does, however, essentially have
the same effect as a reduction of ϵp, as the ability to cool the

FIG. 3. Correlation length as function of the disorder strength h.
For small h the correlation length is defined by Eq. (7), see Fig. 2.
For large h it is calculated from the spatial correlations of δT
discussed in Fig. 4. (Inset) The critical exponent ν can be
extracted from the fit ξe ∼ ½1=ðhc − hÞν�. We get ν ≈ 2.6 assum-
ing hc ¼ 7 (see text).

FIG. 4. Correlation function of the local temperature defined by
CðδÞ ¼ hðTn;i − T̄ÞðTn;iþδ − T̄Þi. In the MBL phase, temperature
fluctuates on a rather short length scale associated with the
localization length ξl. Parameters: N ¼ 12, Tp ¼ 10; U ¼ 2;
ðϵd=ϵpÞ2 ¼ 0.3.
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system strongly depends on Tp (see Supplemental Material
[44]). By simultaneously lowering temperature and irradi-
ation, it should be possible to approach systematically the
limit ϵd, ϵp → 0.
Finally, we discuss possible experimental realizations.

Experiments with disordered indium oxide films have
shown clear signatures of decoupling between the electron
and phonon temperatures, which occurs due to driving the
system with voltage together with the weakness of the
electron-phonon interaction at low temperature [59].
Furthermore, precursors of a many-body localization tran-
sition at finite T have been reported in the same films [36].
Hence, we believe this system is a promising test bed for
investigating many-body localization in the approach
developed in this Letter. Furthermore, it is promising to
search for signatures of many-body localization in weakly
doped semiconductors, which have been studied inten-
sively [60] in the context of the Anderson transition.
An important challenge is to identify suitable local

probes that would allow us to measure the local electronic
temperature. One promising approach is to use scanning
light sources [52] for local Raman spectroscopy [53],
which would be sensitive to the local temperature through
the ratio of the Stokes and anti-Stokes peak amplitudes.
Their resolution of 10–20 nm is comparable to the expected
correlation length of temperature fluctuations. Note that
such a fine resolution is actually unnecessary since even
averaging over Nav uncorrelated regions would reduce the
temperature fluctuations only by a factor

ffiffiffiffiffiffiffiffi
Nav

p
.

Our analysis in this Letter mainly focused on the limit of
weak coupling to the phonons and the drive, i.e., ϵp, ϵd → 0
while keeping ϵd=ϵp constant. A complete understanding of
the driven system at finite ϵp;d requires further study. In
particular, it would be interesting to include the coupling to
drive and to phonons within an effective description of the
Griffiths phase and the MBL critical point [57]. In addition,
tensor network techniques can be used to solve for the
steady-state density matrix of the appropriate Lindblad
evolution. Such studies could shed light on how the onset of
δT=T̄ broadens into a universal crossover with increasing
ϵp, ϵd and thus assist the interpretation of experiments that
are necessarily done at finite coupling.
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