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Strongly correlated systems of fermions have a number of exciting collective properties. Among them,
the creation of a lattice that is occupied by doublons, i.e., two quantum particles with opposite spins, offers
interesting electronic properties. In the past a variety of methods have been proposed to control doublon
formation, both, spatially and temporally. Here, a novel mechanism is proposed and verified by exact
diagonalization and nonequilibrium Green functions simulations—fermionic doublon creation by the
impact of energetic ions. We report the formation of a nonequilibrium steady state with homogeneous
doublon distribution. The effect should be particularly important for strongly correlated finite systems, such
as graphene nanoribbons, and directly observable with fermionic atoms in optical lattices.
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Strongly correlated systems are attracting increasing
interest in many fields including dense plasmas [1], warm
dense matter [2], dusty plasmas [3], and ultracold atoms
[4]. Among the most intriguing phenomena in strongly
correlated quantum systems of both fermions and bosons is
the formation of doublons—pairs of repulsively bound
particles occupying the same lattice site [5]. In recent years,
there have been many attempts to study the dynamics of
doublons after a correlated system is driven out of equi-
librium leading to many surprising results. “Quantum
distillation”—the spatial separation of doublons and single
fermions—was observed in Refs. [6,7]. The nonequili-
brium expansion dynamics of a fermionic particle cloud
following a confinement quench and its slowing down due
to doublon formation has been studied experimentally in a
2D optical lattice [4] and theoretically by 2D quantum
simulations using nonequilibrium Green functions (NEGF)
[8]. Also, the external control of doublons by an interaction
quench [9], by periodically modulating an optical lattice
[10–12], by external electric fields [13–18] or by optical
excitation [19] has been proposed. Furthermore, the
dynamics of heteronuclear doublons [20] and the spatial
transfer of doublons via topological edge states [21] have
been studied.
Previous setups of doublon manipulation involved spa-

tially homogeneous systems containing a large number of
fermions triggering their collective response to a spatially
delocalized excitation. In contrast, in this Letter we predict
a novel mechanism to induce and control the formation of
doublons in a finite system where the excitation is localized
in space and time. The most interesting examples are finite
graphene clusters (e.g., “nanoribbons,” GNR) that are
fabricated in a controlled way, e.g., Refs. [22–24], and
are accurately characterized experimentally [25–27]. In
contrast to graphene, GNR have a finite band gap [28–30]

that can be tuned by varying the system size and geometry
[31], giving rise to exciting electronic correlation effects and
optical and transport properties [32]. The doublon excitation
mechanism we are proposing is driven by energetic ions
penetrating a strongly correlated finite system and deposit-
ing energy (“stopping power,” e.g., Refs. [33–36]).
We demonstrate the mechanism by exact diagonalization
simulations, and a physical explanation is given with an
analytical model in terms of the Landau-Zener effect [37].
We then investigate how the doublon number depends on the
cluster size in one and two dimensions by performingNEGF
simulations and demonstrate the emergence of a stationary
nonequilibrium state with homogeneous doublon distribu-
tion. Finally, we show that the effect can be further enhanced
by using a sequence of excitations.
Model.—We consider strongly correlated electrons in a

single-band finite Hubbard model containing L sites with
nearest-neighbor hopping J and on-site interaction U,

Ĥ ¼ −J
X
hi;jiσ

ĉ†iσ ĉjσ þ U
X
i

n̂i↑n̂i↓ þ
X
iσ

WiðtÞn̂iσ; ð1Þ

where n̂iσ ¼ ĉ†iσ ĉiσ is the density, σ denotes the spin, and
WiðtÞ ¼ −Ze2=½4πϵ0jrðtÞ − rij� describes the interaction of
the electron at lattice site ri with a positive ion of charge Ze
moving on a classical trajectory rðtÞ, neglecting nonlocal
contributions, Wij ¼ δijWi. We denote W0 ¼ e2=ð4πϵ0aÞ
and measure energies, times, and lengths in units of J,
ℏJ−1, and the lattice constant a, respectively. The quantities
of central interest are the site-resolved density, niσ , and
double occupation di, the cluster average of d, and its long-
time limit after passing of the projectile:

niσðtÞ ¼ hn̂iσðtÞi; diðtÞ ¼ hn̂i↑ðtÞn̂i↓ðtÞi; ð2Þ
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davðtÞ¼
1

L

XL
i¼1

diðtÞ; d∞av ¼ lim
t→∞

1

Δt

ZtþΔt

t

dt̄davðt̄Þ: ð3Þ

Results for a finite 2D cluster.—In Figure 1, we present
solutions of the system (1) for an exemplary 2D half-filled
Hubbard nanocluster with L ¼ 12 sites, obtained by time-
dependent exact diagonalization (CI) starting at t ¼ 0 from
the ground state. The trajectory of the ion is set to rðtÞ ¼
ð0; 0; zþ vztÞwith velocity vz and initial z position such that
Wiðt ¼ 0Þ → 0, ∀ i. We use W0 ¼ 14.4J, which corre-
sponds to a force J=a ¼ 1 eV=Å. Figure 1(a) shows the time
evolution for an on-site interaction U ¼ 10J, vz ¼ 2aJ=ℏ,
andZ ¼ 1 and 2, where the expectationvalues are computed
as hÔiðtÞ ¼ hψðtÞjÔjψðtÞi, with the many-electron
wave function jψðtÞi ¼ fT exp½−ði=ℏÞ R t

0 dsĤðsÞ�gjψð0Þi
and time-ordering operator T. During the time of impact
(t ¼ 5ℏ=J), both nBσ and dB (nAσ and dA) increase
(decrease). After departure of the projectile the electron
densities return (close) to their initial value niσ ¼ 0.5.

In contrast, the spatiotemporal evolution of the double
occupation [38] is such that dA;B remain above their initial
value, particularly forZ ¼ 2. Thus, the projectile has created
a significant number of stable doublons, indicating the
emergence of a stationary nonequilibrium (“prethermal-
ized” [39,40]) state. This is quantified in Figs. 1(b) and 1(c)
by the asymptotic value of the average double occupation,
d∞av (3). A striking result is the nonmonotonic dependence of
d∞av on the projectile velocity with a maximum around
vz ∼ ð1…3ÞaJ=ℏ. Moreover, also the dependence on U is
nonmonotonic: d∞av exhibits a single maximum which is in
the range of U ∼ 5J, for Z ¼ 1, and U ∼ 12J, for Z ¼ 2.
Further, d∞av, increases with the projectile charge. We note
that in the present setup we consider a projectile with
constant kinetic energy; for a discussion on the energy
transfer see Ref. [35]. Also, reducing the hopping J between
the A sites (along the edges of the cluster), does not
significantly change the results [41].
Analytical model.—To understand the main mechanism

of the doublon formation, we consider a Hubbard dimer at
half-filling and develop a Landau-Zener (LZ) description
[9,18,37]. The dimer is excited by a time-dependent energy
WðtÞ ¼ −W0 exp½−t2=ð2τ2Þ� on one site, which well
mimics the projectile. Here the interaction duration with
the projectile τ > 0 is inversely proportional to the pro-
jectile velocity vz, and we use W0 ¼ 2U. In the basis
fj↑;↓i; j↓;↑i; j↑↓; 0i; j0;↑↓ig, the Hamiltonian

ĤdimerðtÞ ¼

0
BBBB@

WðtÞ 0 −J −J
0 WðtÞ J J

−J J U þ 2WðtÞ 0

−J J 0 U

1
CCCCA; ð4Þ

is straightforwardly diagonalized for all times.
Figure 2(a) shows the evolution of all four eigenenergies,

E0 ≤ E1 ≤ EU ≤ E2, (the explicit expressions are given in
the Supplemental Material [41]) forU ¼ 10J as function of
WðtÞ. Starting in the triplet ground state (E0), for t ¼ −∞,
the dimer undergoes a transition to the second excited state
(EU) via an avoided crossing with probability p whenWðtÞ
is switched on sufficiently fast. Using a reduced two-level
Landau-Zener picture, the probability that the dimer, for
t ¼ þ∞, remains in state EU can be approximated by a
twofold (forward-backward) passage of the avoided level
crossing:

PE0→EU
¼ 2pð1 − pÞ; ð5Þ

with the LZ transition probability for a single diabatic
passage of the crossing (for details see Ref. [41]),

pðτ;UÞ ¼ exp

�
−
πe1=2½minWðtÞðEU − E0Þ�2τ
2ℏW0jdðEU − E0Þ=dWj

�
: ð6Þ

(a)

(b)

(c)

FIG. 1. Ion impact-induced doublon formation in a two-dimen-
sional Hubbard nanocluster (top left, black points) with L ¼ 12
sites, nearest-neighbor hopping J and on-site interaction U.
(a) Time evolution of the electron density niσ (top) and double
occupation di (bottom) on sites A (blue) and B (red) for a positive
charge with Z ¼ 1 (solid lines) and Z ¼ 2 (dash-dotted lines)
impacting the system at U ¼ 10J with velocity vz ¼ 2aJ=ℏ in
point C ¼ ð0; 0; 0Þ. The green curves show the mean density,
nσðtÞ=L ¼ ð1=LÞPi niσðtÞ ¼ 0.5, and double occupation davðtÞ,
Eq. (3), respectively. (b) and (c) Increase of the double occupa-
tion, d∞av − davð0Þ [inset in (b) shows davð0Þ], as a function of vz
for different U and Z ¼ 1 (Z ¼ 2), where the thin dash-dotted
gray curves correspond toU ¼ U� ¼ 5.4J (U ¼ U� ¼ 10.8J), as
derived from the dimer model below.
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From Fig. 2(b), we observe that, around WðtÞ ¼ −W0, the
level spacing and its derivative are almost independent of
U; therefore, the probabilities p and PE0→EU

only depend
(for fixed U) on the duration τ of the excitation.
Figures 2(c) and 2(d) show d∞av, in the dimer, for U ¼

5J and 15J (black curves), together with the exact solution
of Eq. (4). The most striking result is that d∞av can reach
(and remain at) 0.5, for an optimal choice of τ, which is
well captured by the LZ picture where this corresponds to
the probability (6), p ¼ 1=2, of creating a doublon on
site one. Overall we observe that, for U ≳ 10J, our
model (5) reproduces the envelope of d∞avðτÞ very well,
although it does not capture the oscillations that are
proportional to the field W0 and are due to transient Bloch
oscillations [43].
With insight from the dimer model, we find the param-

eters that maximize d∞av, in the 12-site cluster of Fig. 1:
(i) the optimal interaction strength is U�=J ≈ Z × 5.4;
(ii) for U ¼ U�, the optimal velocity v�z decreases linearly
with Z [41]. The result is shown by the thin gray dash-
dotted line in Fig. 1(b) [Fig. 1(c)]. The striking agreement
of the peak height and position with the CI result for
L ¼ 12 confirms that our model captures the correct
physics: local doublon formation via a twofold passage
of an avoided level crossing.

Maximizing the doublon number in larger 1D and 2D
systems.—We now turn to finite Hubbard clusters with
lower symmetry than the one in Fig. 1 starting with a 1D
half-filled chain with L ¼ 8 sites, U ¼ 20J and periodic
boundary conditions which we solve exactly. To investigate
how the spreading of the doublons along the chain
changes compared to the dimer case we use the same
local excitation, WðtÞ, applied only to site 1. As shown in
Fig. 3(b), now the average doublon number reaches only
d∞av ≈ 0.08, at t ≈ 15ℏJ−1. To increase d∞av further, we apply
a second identical excitation to site one which indeed raises
d∞av to 0.145. Repeating this procedure periodically allows
for a successive increase until a value d∞av ≈ 1=4 is reached.
This final value is consistent with the time evolution of the
many-particle energy spectrum

Sðℏω; tÞ ¼
X
i

jhψðtÞjEiij2e−fðℏω−½Ei−UL=4�Þ2=2ðℏω0Þ2g; ð7Þ

where jEii denote the energy eigenstates, which is shown
in Fig. 3(c) for a level broadening ℏω0 ¼ J. The final
energy spectrum (t > 200ℏJ−1) becomes symmetric around
ω ¼ 0, therefore providing on average two doublons in
the system, corresponding to d∞av → 1=4. Moreover, we
observe that the double occupation (just as the density)
becomes homogeneous along the chain, cf. Fig. 3(b), and

(a)

(b)

(c)

(d)

FIG. 2. Hubbard dimer of Eq. (4). (a) Evolution of the
eigenenergies as a function of WðtÞ, for U ¼ 10J. The initial
and final state corresponds to W ¼ 0, and the impact of the
projectile to −W=J ¼ 20; its trajectory is sketched above the
figure. (b) Eigenenergy difference, E ¼ EU − E0, as function of
WðtÞ forW0 ¼ 2U and different values of U. (c) and (d) Asymp-
totic double occupation, for U ¼ 5J and 15J as function of τ.
Blue: CI data [usingΔt ¼ 50ℏJ−1 in Eq. (3)], black line: Landau-
Zener result based on Eq. (5), thin dashed lines: exact minimum
and maximum values of davðtÞ.

(a)
(d)

(b)

(c)

FIG. 3. Evolution of a half-filled Hubbard chain with L ¼ 8
sites and U ¼ 20J subject to multiple excitations at site 1.
(a) Applied field, WðtÞ, with τ ¼ 0.5ℏJ−1 and peak separation
ts ¼ 10ℏJ−1. (b) Dynamics of the mean double occupation davðtÞ
of Eq. (3). (c) Time evolution of the energy spectrum Sðℏω; tÞ,
Eq. (7) with ℏω0 ¼ J. (d) Doublon formation process for
different filling fractions f ¼ Nσ=L, where Nσ denotes the
number of electrons of spin σ.
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that the correlation part of the interaction energy vanishes
almost completely [not shown], indicating the approach
of a mean-field state. In Fig. 3(d), we furthermore inves-
tigate the same scenario for different fillings [44]
(Nσ ¼

P
i niσ ¼ 1; 2;…; 7), which shows that the change

of double occupation with respect to the initial ground state
is largest for half-filling.
In order to test whether our doublon production protocol

can be realized also in larger systems and 2D setups as well,
we have performed extensive NEGF simulations for L up to
54 of long duration, t ≤ 400ℏJ−1, which enables us to
consider up to Nx ¼ 39 localized excitations of the same
form as in Fig. 3(a). We used second-order Born self-
energies within the generalized Kadanoff-Baym ansatz with
Hartree-Fock propagators (HF-GKBA), as explained in
detail in Refs. [8,35,45,46]. From benchmarks against
density matrix renormalization group simulations [47] we
expect that these simulations are reliable forU=J ≲ 4. Tests
against our present CI data for small systems confirm the
high quality of the NEGF results and indicate that they yield
a lower bound to d∞av, the exact result being 5%–15% higher.
In Fig. 4 we show the asymptotic double occupation, d∞av,

for W0 ¼ 2U ¼ 8J, for 1D chains, Fig. 4(a), and 2D
honeycomb lattice fragments, Fig. 4(b). Clearly, the suc-
cessive increase of d∞av with Nx is confirmed for larger
systems. Also, for fixed Nx, we observe a decrease of d∞av
with L, as expected. Extrapolating to larger values ofNx we
expect that for all systems d∞av will reach at least 0.25.

Summary and discussion.—We have presented a novel
scenario for the production of doubly occupied electronic
states in correlated finite 1D and 2D Hubbard clusters that
is based on the impact of energetic ions. We have reported
CI results for system sizes L ≤ 12 that were complemented
by nonequilibrium Green functions simulations for L ≤ 54.
The physical mechanism has been made transparent by
analytically solving the relevant dimer problem in the
presence of an ion impact: it is the formation of avoided
level crossings between bands of different doublon number,
cf. Fig. 3, and it is straightforwardly extended to multiple
sequential excitations. For the case that the system is not
coupled to a bath [as in our simulations] we observed
formation of a stationary homogeneous doublon population
which provides another example for pre-thermalization
phenomena [17,40,48,49] that recently have attracted high
interest. More generally, we have presented a new scenario
of nonequilibrium dynamics without thermalization [50,51]
that is driven by a rapid, spatially localized single-particle
potential quench instead of an interaction quench. While in
the homogeneous state we observe doublon occupations up
to 0.25, as in previous homogeneous excitation scenarios,
e.g., Refs. [11–18], we have shown [cf. Figs. 2(c) and 2(d)]
that, for inhomogeneous states in finite systems, signifi-
cantly higher final values can be achieved. Moreover, the
flexibility of the excitation protocol should allow for further
optimization. We have verified (see Fig. 1 and Ref. [41])
that the same protocol can be realized also with Coulomb
interaction where the long range interaction even enhances
the doublon number.
Our results are directly applicable to finite correlated

solid state systems, such as graphene nanoribbons [23–31],
that are exposed to energetic ions [36]. For moderately
correlated systems with typical parameters J ¼ 1 eV and
a ¼ 1 Å, ion velocities vz ∼ 1aJ=ℏ are required which
translates into kinetic energies of 120 eV (480 eV) for
protons (alpha particles). These values are well feasible
with ion guns or in low-temperature high-pressure plasmas
[52], where the present effect should have a strong influence
on the stopping power [33–35] and may offer new optical
and transport applications.Of course, for the case ofmultiple
excitations, one would need to consider spatial variations of
the impact point, energy, and time delay between impacts.
These issues are easily studied within the dimer model and
with our NEGF approach as well. Furthermore, for these
systems the coupling to the environment (bath) and the
associated dissipation effectswill have to be included,which
sets an upper limit for the lifetime of the nonequilibrium
doublon state in the range of several hundred femtoseconds.
Since the timescale of the doublon formation is of the order
of 1–10 fs we expect that the presented scenario of multiple
ion impacts can be realized.
Suitable candidates to verify this scenario experimentally

are fermionic atoms in optical lattices. While direct ion
impact will be less efficient, due to the weaker short range

(a)

(b)

FIG. 4. Asymptotic double occupation (3) for (a) 1D chains and
(b) 2D half-filled honeycomb clusters of different size L and
U ¼ 4J from NEGF simulations. The number of excitations, Nx,
which are performed on one of the innermost sites, is indicated in
the figure. Insets show davðtÞ, for L ¼ 24 and Nx ¼ 40.
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charge-atom interaction [53], a promising approach is to
mimic the projectile dynamics via suitable time-dependent
local variation of the lattice potentials [54]. This would
open the way to simulate, with cold atoms, ion stopping in
condensed matter, including correlated materials.

We thank S. Kuhr for valuable information on the exper-
imental issues related to Ref. [54]. This work was supported
by HPC resources of Grant No. shp00015 at the North-
German Supercomputing Alliance (HLRN).
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