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Unconventional responses upon breaking discrete or crystal symmetries open avenues for exploring
emergent physical systems and materials. By breaking inversion symmetry, a nonlinear Hall signal can be
observed, even in the presence of time-reversal symmetry, quite different from the conventional Hall
effects. Low-symmetry two-dimensional materials are promising candidates for the nonlinear Hall effect,
but it is less known when a strong nonlinear Hall signal can be measured, in particular, its connections with
the band-structure properties. By using model analysis, we find prominent nonlinear Hall signals near tilted
band anticrossings and band inversions. These band signatures can be used to explain the strong nonlinear
Hall effect in the recent experiments on two-dimensional WTe2. This Letter will be instructive not only
for analyzing the transport signatures of the nonlinear Hall effect but also for exploring unconventional
responses in emergent materials.
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Introduction.—The Hall effects are among the most
paradigmatic phenomena in condensed matter physics
because of their deep connections with the geometry and
topology [1–3]. All known measurable Hall effects need
magnetic fields or magnetic dopants to break time-
reversal symmetry [1,2,4,5]. Recently, a new Hall effect,
i.e., the nonlinear Hall effect, was proposed [6], which
does not need time-reversal symmetry breaking, but
inversion-symmetry breaking. To measure it, the zero-
or double-frequency component of the Hall conductance
is rectified in response to a driving electric field oscillat-
ing at a low frequency (Fig. 1). This measurement is
highly accessible to known experimental conditions and
thus opens new avenues of probing the spectral, sym-
metry, and topological properties of a number of emer-
gent materials. More importantly, the idea can be
generalized to other unconventional responses upon
breaking discrete and crystal symmetries, leading to a
promising and unknown territory. Despite the symmetry
argument, how a considerably strong nonlinear Hall
signal can be measured remains less known and is the
focus of recent explorations.
In this Letter, we investigate the relation between the

nonlinear Hall effect and signatures of energy bands in 2D
systems. The nonlinear Hall response is proportional to the
so-called Berry dipole [6]. By analyzing a generic model
of tilted massive Dirac fermions, we find that the Berry

dipole is strong near tilted band anticrossings and band
inversions (Fig. 2). To give an example of broad interest, we
calculate the nonlinear Hall response in the bilayer WTe2
(Fig. 3), in which spin-orbit coupling modulates band
anticrossings and band inversions to give divergences of
the Berry dipole and strong nonlinear Hall responses. Our
results are consistent with the strong nonlinear Hall
response and its angular dependence (Fig. 4) in recent
experiments [7,8] and will inspire more experiments on the
nonlinear Hall effects and related novel phenomena.
Review of the nonlinear Hall effect.—The nonlinear

Hall effect originates from the dipole moment of the
Berry curvature in momentum space or, in short, the
Berry dipole. When applying an oscillating electric field
EðtÞ ¼ RefEeiωtg with the amplitude vector E and
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FIG. 1. Schematic of how to measure the nonlinear Hall effect
in a standard Hall bar. The experimentally measured I-V relation
is related to the theoretical Berry dipole defined by the electric
field-current density (E-J) relation.
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frequency ω, the nonlinear current in response to the
electric field can be formally decomposed into the dc and

double-frequency components Ja ¼ RefJð0Þa þ Jð2Þa ei2ωtg,
with Jð0Þa ¼ χð0ÞabcEbE�

c and Jð2Þa ¼ χð2ÞabcEbEc, respectively.
For time-reversal symmetric systems, their nonlinear Hall
coefficients have the form [6]

χð0Þabc ¼ χð2Þabc ¼ εacdDbde3τ=½2ℏ2ð1þ iωτÞ�; ð1Þ

where −e is the electron charge and τ is the momentum
relaxation time. According to the experiments in [7,8],
the typical frequency of the ac electric field is about
10–1000 Hz and τ is approximately picoseconds in experi-
ments; thus the frequency dependence in the denominator
can be neglected due toωτ ≪ 1, which is the key difference
from nonlinear optics. The Berry dipole can be found as

Dbd ¼ −
X
i

Z
ddk
ð2πÞd

∂ϵik
∂kb Ω

d
ik
∂fk
∂ϵik ; ð2Þ

where εabc is the Levi-Civita symbol, a; b; c; d ∈ fx; y; zg,
fk is the Fermi distribution, and the Berry curvature can be
found as [3]

Ωa
ik ¼−2εabc

X
j≠i

Imhij∂Ĥ=∂kbjjihjj∂Ĥ=∂kcjii
ðϵik− ϵjkÞ2

; ð3Þ

where jii refers to the eigenstate in band iwith energy ϵik for
a given wave vector k. The derivative of the Fermi
distribution in this definition of the Berry dipole infers that
the states close to the Fermi surface mainly contribute to the
nonlinear Hall response. Note that, under time reversal,
Ωa

i ð−kÞ ¼ −Ωa
i ðkÞ and ∂ϵik=∂ð−kbÞ ¼ −∂ϵik=∂kb; thus

the integral in Eq. (2) can survive in time-reversal symmetric
systems.Meanwhile, inversion symmetrymust be broken to
support finite Berry curvature so that the integral in Eq. (2)
does not vanish. Table I compares the differences between
the linear and nonlinear Hall effects.
Tilted 2D massive Dirac model.—According to Eq. (2),

the nonlinear Hall effect requires anisotropic bands with
finite Berry curvature, so that ΩðkÞ ≠ Ωð−kÞ. The tilted
2D massive Dirac model can give the ingredients

Ĥd ¼ tkx þ vðkyσx þ ηkxσyÞ þ ðm=2 − αk2Þσz; ð4Þ

where ðkx; kyÞ are the wave vectors, ðσx; σy; σzÞ are the
Pauli matrices, η ¼ �1, m is the gap, and t tilts the Dirac
cone along the x direction. Compared to Ref. [6], α is
introduced to regulate topological properties as k → ∞ [9].
The time reversal of the model contributes equally to the
Berry dipole, so it is enough to study this model only. The
model describes two energy bands (denoted as �) with
the band dispersions ϵ�k ¼ tkx � ½v2k2 þ ðm=2 − αk2Þ2�1=2,
where k2 ≡ k2x þ k2y. In the x–y plane, the Berry curvature
behaves like a pseudoscalar, with only the z component
Ωz

�k ¼ �ηv2ðm=2 − αk2Þ=f2½v2k2 þ ðm=2 − αk2Þ2�3=2g.
Correspondingly, the Berry dipole behaves as a pseudo-
vector constrained in the x–y plane, e.g., Dxz → Dx and
Dyz → Dy.
Berry dipole near tilted band anticrossing.—The band

dispersion, Berry curvature, and Berry dipole of the Dirac
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FIG. 2. (a)–(d) (left panels) The band structure of the tilted
Dirac fermion model in Eq. (4) as a function of kx at ky ¼ 0 with
the tilt t=v ¼ 0 (a), t=v ¼ 0.5 (b), t=v ¼ 1.0 (c), and t=v ¼ 1.5
(d). The color bar is for the Berry curvature, whose intensity is
plotted on each band. (a)–(d) (right panels) The corresponding
Berry dipoleDx ≡Dxz, measured by the driving current along the
x direction and the Hall voltage along the y direction. (e),(f) The
maximum of the Berry dipole Dx [the circles in (b)–(d)] as a
function of the tilt t=v for different mass gap (e) and as a function
of the gap m for different tilt angle (f). The other parameters are
v ¼ 1 eVÅ, α ¼ 1 eVÅ2, η ¼ −1, and m ¼ 0.2 eV.

TABLE I. Comparison of the linear and nonlinear Hall effects.
The Berry dipole in Eq. (2) can be written as a Fermi-sea integral
by using the integration by parts.

Linear Nonlinear

Broken symmetry Time reversal Inversion
I-V relation ∼Vy

ω=Ixω ∼Vy
2ω=I

x
ωIxω

Fermi-sea integral of Berry curvature Ωk ∂Ωk=∂k
In-gap signal Possible No
Angular dependence No Eq. (7)
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cone in Eq. (4) is shown in Fig. 2. If there is no tilt (t ¼ 0),
Fig. 2(a) shows that the Berry curvature is symmetrically
concentrated around the band edges, so there is no Berry
dipole. As the Dirac cone is tilted, the Berry curvature
no longer symmetrically distributes, so the peaks of the

Berry dipole appear near the band edges, as shown in
Figs. 2(b)–2(d). Here the tilt along the x direction does
not break the y-direction mirror reflection symmetry
(ky → −ky), so only the x component of the Berry dipole
is nonzero. Figure 2(e) shows that the Berry dipole vanishes
at zero tilt (t ¼ 0), grows with increasing tilt, and reaches a
maximum near the critical point (t ¼ v), beyond which the
Dirac cone is overtilted (t > v).
The Berry dipole vanishes in the gap due to the absence

of carriers. Thus, unlike the Berry curvature in the intrinsic
anomalous Hall effect, the Berry dipole does not build up
across the band gap in the nonlinear Hall effect. The Berry
dipole of the conduction and valence bands have opposite
signs, because the bands of the model are particle-hole
symmetric and the Berry curvature changes sign across the
gap. The Berry curvature usually reaches maximum at the
band edges, but the Berry dipole peaks do not lie exactly
at the band edges because the group velocity vanishes at
the band edges (see details in the Supplemental Material,
Sec. SII [10]).
Divergence of Berry dipole near band inversions.—By

varying m in model (4) from the same sign as α to the
opposite sign, the system undergoes a band inversion,
accompanied by a topological phase transition from the
quantum anomalous Hall insulator to a trivial 2D insulator
[11,12]. During the transition, the Berry curvature of the
conduction and valence bands exchanges sign [13] and the
linear Hall conductance changes by e2=h. Consequently,
one can expect that the Berry dipole also changes sign
during this topological phase transition. Figure 2(f) shows
that divergences appear at the critical point where m
changes sign. The divergences near the gap closing indicate
that the nonlinear Hall response can be significantly
enhanced near the critical point of the topological phase
transition. The divergences of the Berry dipole can serve as
a probe for the topological phase transition of 2D tilted
Dirac fermions.
BilayerWTe2.—Now we show that the above-mentioned

band signatures, i.e., the tilted band anticrossing and band
inversion, can give strong nonlinear Hall signals in bilayers
of WTe2. According to the above analysis, a time-reversal
symmetric system needs inversion-symmetry breaking to
have large Berry curvature and large band tilt near the
Fermi surface, in order to show a strong nonlinear Hall
response. A number of materials meet the requirements
[14–18]. Among them, the most promising candidate is
WTe2, which has attracted tremendous attention due to its
properties associated with a significant distribution of the
Berry curvature [19–30]; i.e., the bulk WTe2 is a type II
Weyl semimetal [20,21]; its monolayer can host the high-
temperature quantum spin Hall effect [22–26] and electri-
cally switchable circular photogalvanic effect [27]. For the
nonlinear Hall effect, the WTe2 bilayer has several advan-
tages. It can be naturally exfoliated from bulk crystals. It
has no inversion symmetry [28,29], while monolayers
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FIG. 3. (Left) The band structure of the coupled Dirac Fermion
model as a function of kx at ky ¼ 0 in Eq. (5) with increasing spin-
orbit coupling strength νx [(a)–(f)]. The ovals mark the titled Dirac
cones. The arrows indicate the band inversion and anticrossings.
(Right) The Berry dipole Dx ≡Dxz for corresponding spin-orbit
coupling strength. Here νy ¼ 0 eVÅ, γ ¼ 0.05 eV, and the other
parameters in Ĥdi areK1 ¼ 0.1π,K2 ¼ 0.15π,v1 ¼ v2 ¼ 2 eVÅ,
t1 ¼ t2 ¼ 1.5 eVÅ, m1¼m2¼0.1 eV, η1 ¼ −1, η2 ¼ 1,
E1 ¼ 0.02 eV, E2 ¼ −0.08 eV.
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require gating to break inversion symmetry. It exhibits a
spontaneous out-of-plane electric polarization [30], which
can help tuning spin-orbit coupling through gating.
In the absence of spin-orbit coupling, the bilayer WTe2

can be described by four tilted Dirac fermions [31]. In the
presence of spin-orbit coupling, we propose an effective
model of the bilayer WTe2, which couples four pairs of
tilted Dirac cones and reads

ĤB ¼

0
BBBBB@

Ĥd1 P̂ 0 γ

P̂ Ĥd1 γ 0

0 γ Ĥd2 P̂

γ 0 P̂ Ĥd2

1
CCCCCA
; ð5Þ

where Ĥdi describes the tilted Dirac cone located atKi (see
the Supplemental Material, Sec. SIII [10]),

P̂ ¼
�
νxkx − iνyky 0

0 −νxkx − iνyky

�
; ð6Þ

and νx and νy measure the spin-orbit coupling strength
along the x and y directions, respectively, and can be tuned
by a gate voltage applied along the z direction. This model
describes only the negative half of the Brillouin zone,
which contributes equally to the Berry dipole as the positive
half does. This model can qualitatively capture many key
features of the bilayer WTe2, including the band structure
evolution with spin-orbit coupling and the nonlinear
Hall effect.

The evolution of the band structure with spin-orbit
coupling is shown in the left panels of Fig. 3. According
to the first-principles calculations [31], in the absence of
spin-orbit coupling, the bilayer WTe2 is a semimetal with a
gap opened by the interlayer coupling, and each band is
twofold degenerate. We can identify two tilted Dirac cones
(marked by the ovals) in Fig. 3. The Berry curvature of the
two Dirac cones are opposite because the two layers of
the bilayer WTe2 are related through a mirror reflection.
The experiments have observed that the bilayer WTe2
becomes insulating at low temperatures, implying a pos-
sible gap formation due to spin-orbit coupling [24]. As
spin-orbit coupling is turned on, the degeneracy of the
bands is lifted. The band structure shown in Fig. 3(f) is
well gapped due to spin-orbit coupling and is likely the
case in the experiments. As spin-orbit coupling decreases,
Fig. 3 shows that the band gaps shrink and the system
undergos two band inversions [indicated by the arrows in
Figs. 3(b)–3(d) and 3(c)–3(e)], at which the conduction
band exchanges the sign of the Berry curvature with the
valence band. This band structure evolution is consistent with
the first-principles calculations and experiments [31,32].
The corresponding Berry dipole results of these band

structures are shown in the right panels of Fig. 3. As spin-
orbit coupling decreases, the magnitude of the nonlinear
Hall response increases with the shrinking gaps. In par-
ticular, the divergences appear at two band inversions.
These divergences at the band inversions follow the
mechanism shown in Fig. 2(f). The Berry dipole behavior
is qualitatively consistent with the giant nonlinear Hall
effect observed in the experiments, in which the nonlinear
Hall response shows many sign changes and sharp reso-
nancelike peaks as the gate voltage aligns the Fermi energy
with the band signatures, such as the tilted band anticross-
ings and band inversions [7].
Angular dependence of the nonlinear Hall voltage.—For

systems without highfold rotation axis perpendicular to
the 2D plane, it is known that the linear longitudinal and
transverse resistances show twofold angular dependence as
ρxx ¼ ρk cos2 θ þ ρ⊥ sin2 θ and ρxy ¼ ðρk − ρ⊥Þ sin θ cos θ.
Here ρk, ρ⊥ refer to the resistivity along the principal
axes and θ is the angle between the driving current and the
jj principal axis. The nonlinear Hall coefficients also show
angular dependence, but different from the linear case, the
angular dependence is onefold

χxxy ¼ −χyxx ¼ χk cos θ − χ⊥ sin θ;

χxyy ¼ −χyyx ¼ χk sin θ þ χ⊥ cos θ; ð7Þ
where χk and χ⊥ represent the nonlinear Hall coefficients
along the principal axes (see details in the Supplemental
Material, Sec. SIV [10]). All these coefficients change sign
when the current direction is reversed. The experiments
measure only the Hall voltages, so we transform the angular
dependence from the nonlinear Hall coefficients to that

Experiment
Kang et al.

.268

Theory

1
2
3

FIG. 4. The angular dependence of the nonlinear Hall voltage
as a function of the angle θ between the driving current and
principal axes for different resistance anisotropy ρjj=ρ⊥. The
circles are the experimental data adapted from [8]. ρjj=ρ⊥ ¼
0.268 is read out from the experiment. For contrast, different
curves are scaled so that they cross with the experimental data at
θ ¼ π=2, 3π=2, where V2ω

x =ðVω
y Þ2 ≃ 5.15 × 10−3 V−1.
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of the Hall voltages, and for 2D WTe2 it reads (see the
Supplemental Material, Sec. SIV [10])

V2ω
x

ðVω
y Þ2

¼
χkρ2kρ⊥ sin θ

ðρk sin2 θ þ ρ⊥ cos2 θÞ2 ; ð8Þ

where we have assumed that the driving current is along
the y direction and the nonlinear Hall voltage is measured
along the x direction.
This means that the line shape of the angular dependence

of V2ω
x =ðVω

y Þ2 depends on the resistance anisotropy ratio
ρk=ρ⊥, as shown in Fig. 4. For ρk=ρ⊥ ¼ 0.268, we can
quantitatively reproduce the case measured in the experi-
ment [8]. In the isotropic case (ρk=ρ⊥ ¼ 1), the angular
dependence is simply a sine function. For ρk=ρ⊥ > 1, the
peaks of the sine function are flattened, which is not the
case in the experiment [8]. If the resistance anisotropy ratio
is large enough, say ρk=ρ⊥ ¼ 3, the maxima at θ ¼ π=2,
3π=2 turn into minima, giving a double-peak line shape.
This double-peak angular dependence can be observed by
modifying the resistance anisotropy through tuning the gate
voltages [7].
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