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The projected electrostatic potential of a thick crystal is reconstructed at atomic resolution from
experimental scanning transmission electron microscopy data recorded using a new generation fast-readout
electron camera. This practical and deterministic inversion of the equations encapsulating multiple
scattering that were written down by Bethe in 1928 removes the restriction of established methods to

ultrathin (≲50 Å) samples. Instruments already coming on line can overcome the remaining resolution-
limiting effects in this method due to finite probe-forming aperture size, spatial incoherence, and residual
lens aberrations.
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Unlike most other types of radiation, electrons interact
strongly with condensed matter samples through the
Coulomb force. This makes it possible to study very small
amounts of material, and modern aberration-corrected trans-
mission electron microscopy (TEM) is capable of sub-50 pm
resolution [1]. However, in all but the thinnest specimens the
strong interaction invariably leads to multiple scattering
of the probing electrons as expressed in the equations of
Bethe [2]. Consequently, the recorded images are a nonlinear
function of the specimen electrostatic potential which
describes both the atomistic structure and the electron
distribution due to interatomic bonding, complicating the
determination of these quantities. Broadly, this problem has
been approached in three ways.
The first approach is to assume a structure model and

simulate the images by solving the forward scattering
problem. Results that agree well with experiment give
confidence in the model, whereas significant discrepancies
tell against it. So-called directly interpretable imaging
modes—including negative Cs imaging in conventional
TEM (CTEM) [3] and incoherent imaging modes in
scanning TEM (STEM) [4]—aid this approach because
despite the multiple scattering the appearance of these
images often suggests column locations and constituency
in crystals aligned along zone axes. Information on the
electron redistribution due to interatomic bonding is not
directly measured in this approach but can be predicted via
first principles calculations.
The second approach is numerical optimization,

solving the forward scattering problem for a sequence of

electrostatic potentials refined for successively better fit to
the experimental data. A variety of approaches have been
proposed [5–7], but only a few successfully applied to
experimental data [8]. Given the multidimensional and
nonlinear nature of the problem, optimization approaches
often stagnate in local minima. Reducing the dimension-
ality helps, hence the experimental success of quantitative
convergent beam electron diffraction using few-beam
conditions to reconstruct the low-order Fourier coefficients
of potential most sensitive to bonding [9,10].
The third approach seeks to solve the inverse scattering

problem, to deterministically reconstruct the electrostatic
potential from experimental data without at any stage
solving the forward problem. Established approaches only
achieve this via simplifying assumptions. Multiplicative or
phase object approximation reconstructions assume multi-
ple scattering confined to a single plane. This has been
achieved at atomic resolution in differential phase contrast
[11] and various forms of ptychography [12–14], but only
yields quantitative results for very thin samples [15,16].
Application to a wider class of samples than ultrathin
materials requires solving the inverse scattering problem
taking into account multiple scattering.
Spence [17] and Allen et al. [18] showed that inversion

of multiple scattering in thick samples was possible if the
complex-valued scattering matrix could be determined. The
original proposal required through-focal-series CTEM
images at a carefully controlled series of finely spaced
tilts and has never been experimentally realized. Findlay
[19] noted that by reciprocity the required data might be

PHYSICAL REVIEW LETTERS 121, 266102 (2018)

0031-9007=18=121(26)=266102(6) 266102-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.266102&domain=pdf&date_stamp=2018-12-26
https://doi.org/10.1103/PhysRevLett.121.266102
https://doi.org/10.1103/PhysRevLett.121.266102
https://doi.org/10.1103/PhysRevLett.121.266102
https://doi.org/10.1103/PhysRevLett.121.266102


collected in STEM. Recording diffraction patterns at each
point in an atomic-resolution raster scan was not then
possible, but instrumental developments over the last
five years have changed this. In this Letter, we describe
a procedure for constructing the complex-valued scattering
matrix from scanning diffraction data, and invert the
multiple scattering to reconstruct the projected electrostatic
potential from experimental data obtained from an approx-
imately 230 Å thick Si [110] sample.
We begin with the Schrödinger equation in reciprocal

space for a fast electron interacting with the electrostatic
potential of a specimen of condensed matter [20],

dψgðzÞ
dz

¼ −iπλg2ψgðzÞ þ
X

h

iσVg−hψhðzÞ: ð1Þ

The ψgðzÞ are Fourier coefficients of the fast electron wave
function as a function of depth z in the specimen and Fourier
space coordinates g (magnitude g) and h in the plane
perpendicular to the direction of propagation. The Fourier
coefficients of the electrostatic potential are denoted by
Vg [21]. Inelastic scattering can be described to a good
approximation by including an absorptive component in
Vg [23]. The interaction constant σ ¼ 2πmeeλ=h2, where
me and λ are the (relativistically corrected) mass and
wavelength of the electron, e is the electron charge, and
h is Planck’s constant. Equation (1) is a set of coupled
linear equations for which the solution can be written as the
matrix-vector product

ψðzÞ ¼ SðzÞψð0Þ≡ eiAzψð0Þ; ð2Þ

where ψðzÞ and ψð0Þ are vectors containing the Fourier
coefficients ψg at depth z and the entrance surface,
respectively, and the elements of the structure matrix A
are given byAg;h ¼ −πλg2δgh þ σVg−h, in which δgh is the
Kronecker delta. An efficient numerical calculation of
Eq. (2) typically proceeds through diagonalization of the
scattering matrix S (the Bloch wave method [2,24]), or
through a split-step evaluation of S, with the operator
involving the propagation matrix elements −πλg2δgh and
that involving the specimen interaction matrix elements
σVg−h applied in alternating sequence (called the multislice
method in the electron microscopy literature [25]).
The forward problem essentially consists of calculating

S for a given structure defined byA. In electron diffraction,
Fig. 1(a), plane wave illumination inclined such that
the transverse component of the wave vector is g gives
diffraction peak intensities proportional to jSh;gj2 at dif-
fraction plane coordinate h. The CTEM image for defocus
Δf can be calculated from the elements Sh;g of the
scattering matrix via

ICTEMðr;g;ΔfÞ¼
���
X

h
Sh;g exp ½2πið−h2Δfλ=2þh · rÞ�

���2;

ð3Þ

where the summation is over all h with magnitude less
than the image forming aperture. The STEM image formed
with the point detector placed at diffraction coordinate g
can be calculated from the elements Sg;h of the scattering
matrix via

ISTEMðr;g;ΔfÞ¼
���
X

h
Sg;h exp ½2πið−h2Δfλ=2−h · rÞ�

���2;

ð4Þ

where again the summation is over all h with magnitude
less than the probe-forming aperture.
The inverse problem essentially consists of using mea-

surements on S to deterministically construct A. Spence
[17] and Allen et al. [18] present a method of achieving
this if the complex-valued S matrix has been determined.
Whereas the geometry of Fig. 1(a) does not provide
sufficient information to determine the phase of the
elements of S, the CTEM geometry of Fig. 1(b) allows
the determination of the amplitude and phase of elements
Sh;g corresponding to reciprocal space vectors h within
the imaging aperture by reconstructing the complex-valued
exit surface wave from through-focal series for each value
of g [26]. Exit wave reconstruction by varying other probe
aberrations [27,28] or specimen tilt [29] are also possible.
The STEM geometry of Fig. 1(c) likewise allows the
determination of the amplitude and phase of elements
Sg;h corresponding to reciprocal space vectors h within the
probe-forming aperture from a single through-focal series
scan by placing point detectors at points g.
We effect the reconstruction of Vg as a two-part process.

First, we reconstruct S from STEM experiments using a
pixelated detector capable of fast readout (≳100 frames per
second)—instrumentation that has only recently become

FIG. 1. An illustration of different TEM modes: (a) electron
diffraction with plane wave illumination tilted to have transverse
wave-vector component g; (b) a through-focal series of CTEM
images; and (c) diffraction patterns in STEM, which can be
recorded as a function of probe position and for different defocus
values Δf.
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available [30]—such that diffraction patterns can be recorded
at each probe position during the STEM raster scan. Second,
we invert S to obtain A, from which the Fourier coefficients
Vg may be read. This is possible because, as follows from
Eq. (2), A and S share the same eigenvectors, and the
eigenvalues ofA can be determined from the eigenvectors of
S using the known diagonals of A and a number of general
symmetries in A [18]. Since only the eigenvectors of S are
used as input into the reconstruction, whereas information
about specimen thickness is contained only within the
eigenvalues of S, an estimate of specimen thickness is
not required for the reconstruction—a particularly advanta-
geous property of this method [31].
The S-matrix reconstruction process is sketched in Fig. 2

for experimental data from a [110] oriented silicon crystal
recorded on an FEI CETA fast-readout electron camera
in an aberration-corrected FEI Titan3 80–300 FEGTEM
microscope. The instrument was operated at 305 kV. A
19 mrad probe-forming aperture was chosen as a compro-
mise between maximizing resolution and minimizing the
adverse effects of lens aberrations. Data were recorded at
four different defocus values (Δf ¼ 0, −50, −100, and
−150 Å) with a sampling of 0.16 Å=pixel and a probe
dwell time of 3.6 ms. A snapshot of the diffraction patterns
for each scan in the focal series is shown in Fig. 2(a). STEM
images are formed by plotting, as a function of probe
position, the integrated signal in circular regions of the
diffraction pattern that are large enough to reduce noise but
small enough that the average intensity well approximates
the ideal intensity in a point detector. Here an approx-
imately 1.5 mrad diameter sufficed, as depicted on a
representative diffraction pattern in Fig. 2(b) and discussed
further in the Supplemental Material [32], Fig. S3. To
improve the signal-to-noise ratio and correct drift and
scanning distortions, the centers of the Si dumbbells in
the simultaneously recorded high-angle annular dark field
images were identified (as indicated in the Supplemental
Material, Fig. S4 [32]) and unit cell averaging of the STEM
images synthesized from the 4D data was carried out via the
method described in Ref. [33]. A montage of unit-cell-
averaged STEM images is shown in Fig. 2(c), the Δf ¼
0 Å data set being shown at the top of each stack.
In STEM, the incoherence of the electron source,

distortions of the probe scan raster and mechanical vibra-
tions all mean that experimental images exhibit a lower
resolution than that expected based on the probe-forming
aperture alone. Convolution with an effective source size is
typically applied to simulated images to account for these
factors. For the experimental data presented here, simulated
high-angle annular dark field images needed to be con-
volved with a Gaussian of full width at half maximum
(FWHM) of 0.86 Å for good agreement with experiment
(see Fig. S5 in the Supplemental Material [32]), a value
consistent with previous measurements on this instrument
[34]. The effective source size needs to be deconvolved

from the STEM images, which was done using ten
iterations of the Lucy-Richardson method. Note that this
process can only partially ameliorate the effects of spatial
incoherence, as Fourier frequencies suppressed below the
level of noise cannot be faithfully recovered.
Given the structure of Eq. (4), the complex-valued

S-matrix row corresponding to the g coordinate of the
STEM detector can be reconstructed using the iterative
wave function reconstruction method [35]. A montage of
reconstructed complex-valued wave functions from the
focal series in Fig. 2(c), after deconvolution of effective

0

(a)

(c)

(b)

(d)

FIG. 2. A 4D-STEM scan was recorded at four different
defocus values, of which a small subset of the recorded
diffraction patterns are shown in (a). A through-focal series of
synthesized bright-field STEM images was then constructed
using the detectors plotted as circles on the diffraction pattern
in (b), the subset formed from the red circles being shown in (c).
The complex-valued wave functions associated with these
through-focal series were then reconstructed via iterative wave
function reconstruction [26], those shown in (d) corresponding to
the series shown in (c) (with color denoting the phase). A more
complete set of images with their corresponding complex-valued
wave function reconstructions is shown in the Supplemental
Material [32], Figs. S1 and S2.
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source size, is shown in Fig. 2(d), where color represents
the phase. A subtlety of phase reconstruction is that each
wave function is only recoverable up to an arbitrary
constant phase offset Δϕg, meaning that each of the
independently recovered wave functions in Fig. 2(d) are
potentially offset by these arbitrary phases. This is over-
come by using the general symmetry Sh;g ¼ S−g;−h [18]
and unconstrained minimization to find the optimal set
of Δϕg.
From the same data set, reconstructions were carried out

using both S-matrix inversion and differential phase con-
trast (DPC) reconstruction [11] (the latter from the Δf ¼
−100 Å data set since midplane defocus is optimal for DPC
reconstruction [15]). Comparison of the reconstructions is
best carried out by comparing the Fourier coefficients of the
projected potential Vg (also called the structure factors),
with bonding information predominantly residing in the
low-order Fourier coefficients. Figure 3(a) compares recon-
structed Fourier coefficients from the S-matrix inversion,
the DPC reconstruction, and simulation. The black circles
in Fig. 3(a) represent the simulated Fourier coefficients of
the projected potential Vg [36], positioned according to the
reciprocal space coordinate g, assuming an independent
atom approximation. The colored disks represent the
reconstructed Fourier coefficients, those on the left half
of the figure being reconstructed by inversion of the S
matrix and those on the right half of the figure being
reconstructed using DPC. The area of the circles and disks
is proportional to the magnitude of the Fourier coefficient
jVgj. The color of the disks represents the phase difference
between the reconstructed and simulated Fourier coeffi-
cients. Thus, a reconstructed Fourier coefficient of potential
Vg is accurately reconstructed (relative to the simulation) if
the corresponding disk precisely fills the surrounding circle
and is red.
It is thus seen in Fig. 3(a) that the S-matrix inversion

gives a better reconstruction of the Fourier coefficients,
particularly the amplitudes of the higher order coefficients,
although there are some notable deviations among their
phases. Both methods appear to give comparably good
reconstructions for the lower order Fourier coefficients,
though neither is in perfect agreement with simulation.
Real-space plots of the reconstructed potential are inset

in Fig. 3(a) with the unit cell tiled 2 × 2 and low-pass
filtered to contain only those Fourier coefficients for which
g is within the probe-forming aperture. The characteristic
dumbbell structure of Si [110] is clearly seen. The DPC
reconstruction procedure has a built-in regularization sup-
pressing the high-frequency Fourier coefficients which are
most prone to error, but the S-matrix inversion does not.
Consequently, the real-space potential from the S-matrix
inversion has better contrast and more finely resolved
features than that of the DPC reconstruction but also
contains anomalous fine oscillations, the former consistent

(a)

(b)

(c)

FIG. 3. (a) An evaluation of the S-matrix and DPC recon-
structed potential applied to the 4D-STEM experimental data
from Si [110]. The area of each circle or disk in the scatter plot is
proportional to jVgj while the disk color represents the phase
difference between the reconstructed and reference Vg, as given
by the color bar. The size of the probe-forming aperture is
indicated by the large black circle and a real-space map of each
reconstructed potential is inset for reference. Also shown are
S-matrix and DPC reconstructions from simulated data for a
hypothetical microscope with improved coherence and aberration
correction for (b) 19 and (c) 24 mrad probe-forming apertures.
Within each subfigure, the inset real-space maps of the recon-
structed potential are given on the same absolute scale.
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with the larger magnitudes of the high-order reconstructed
Fourier coefficients and the latter due to errors in the phases
of said coefficients. We rely on the Fourier space repre-
sentation to make clear that the errors are mostly confined
to the high-order coefficients, whereas the low-order
coefficients—which are of the most interest for an exper-
imental measurement of the electron distribution due to
interatomic bonding [9,10]—are slightly better recon-
structed by the S-matrix inversion than the DPC
reconstruction. (Note that interatomic bonding is not
included in the simulations in Fig. 3.)
Though for this data set Fig. 3(a) suggests that S-matrix

inversion gives only a modest improvement over the DPC
reconstruction, the limitations on the S-matrix inversion
result from experimental factors whereas the limitations on
the DPC reconstruction result from the fundamental break-
down for thicker samples of its underlying assumption that
multiple scattering is confined to a single plane. This is
visible in the reconstructions shown in Figs. 3(b) and 3(c),
for 19 and 24 mrad convergence angles, respectively,
performed on data simulated using the μSTEM simulation
package [39]. Both subfigures assume aberration-free
probes, a spatial incoherence of FWHM 0.4 Å—achievable
on existing microscopes equipped with the latest electron
sources [1,40]—and a comparable level of noise to the
present experiment.
Much better agreement is seen between the Fourier

coefficients from the S-matrix inversion and the simulated
reference for all g within the probe-forming aperture in
Fig. 3(b). Some errors remain in the reconstructed amplitude
of the Fourier coefficients due to the so-called truncation
effect, the restriction the probe-forming aperture places on
the size of the S matrix that can be reconstructed [19]. These
errors are reduced by increasing the size of the probe-
forming aperture, as demonstrated in Fig. 3(c) where the
Fourier coefficients of potential are more faithfully recon-
structed. The remaining small errors are predominantly due
to the addition of Poisson noise to the data calculated using
μSTEM. We thus conclude that the improved coherence and
aberration correction available with the latest generation
aberration-corrected electron microscopes will produce
improved S-matrix inversion and potential reconstruction
in the presence of multiple scattering.
No similar improvement in the DPC reconstruction is

predicted; despite better input data, the DPC reconstruc-
tions in Figs. 3(b) and 3(c) are little improved over that in
Fig. 3(a). This is because, unlike the S-matrix inversion, the
DPC reconstruction makes the projection approximation
which is poor for this 230 Å thick Si [110] sample.
This Letter has demonstrated a direct inversion from

experimental 4D-STEM data to structure in the presence of
multiple scattering, thereby overcoming the long-standing
limitation of direct reconstruction methods to very thin
samples. Newly available fast-readout pixel detector capa-
bilities in an aberration-corrected electron microscope were

essential to obtaining the necessary scattering data set. Our
results unambiguously show the potential for routine direct
solution of the multiple scattering problem given the better
source coherence and more precise control of lens aberra-
tions available in instruments currently coming on line.
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