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Studying the crystallization process of silicon is a challenging task since empirical potentials are not able
to reproduce well the properties of both a semiconducting solid and metallic liquid. On the other hand,
nucleation is a rare event that occurs in much longer timescales than those achievable by ab initiomolecular
dynamics. To address this problem, we train a deep neural network potential based on a set of data
generated by metadynamics simulations using a classical potential. We show how this is an effective way to
collect all the relevant data for the process of interest. In order to efficiently drive the crystallization process,
we introduce a new collective variable based on the Debye structure factor. We are able to encode the long-
range order information in a local variable which is better suited to describe the nucleation dynamics. The
reference energies are then calculated using the strongly constrained and appropriately normed (SCAN)
exchange-correlation functional, which is able to get a better description of the bonding complexity of the
Si phase diagram. Finally, we recover the free energy surface with a density functional theory accuracy, and
we compute the thermodynamics properties near the melting point, obtaining a good agreement with
experimental data. In addition, we study the early stages of the crystallization process, unveiling features of
the nucleation mechanism.

DOI: 10.1103/PhysRevLett.121.265701

Silicon is one of the most important elements, both from
a scientific and technological point of view. It is a
tetravalent bonded semiconductor in the solid state, while
it forms a metallic liquid with a loosely packed arrangement
resulting from the persistence of covalent bonding [1].
This competition between covalent and metallic behavior
has proved to be rather difficult to model with effective
potentials, as there is difficulty in describing both phases
with similar precision. At the very beginning of ab initio
molecular dynamics (AIMD), the development of the
Car-Parrinello method allowed providing insight into the
melting mechanism, showing how the liquid is character-
ized by a bond-breaking and bond-forming process that
gives rise to its unusual behavior [1]. Since then, many
studies have been conducted on the properties of both solid
and liquid Si, including also ab initio estimates of the
melting temperature [2,3], but a description of the crys-
tallization process from first principles still represents a
major challenge.
Understanding the mechanism behind crystal nucleation

is a long-standing goal of physics and of material science.
Classical nucleation theory suggests that thermal fluctua-
tions in the supercooled liquid lead to the formation of a
crystalline nuclei. Once the size of these nuclei reaches a
critical threshold a macroscopic crystal phase is rapidly

formed [4,5]. Since this process takes places at the atomic
or molecular scale, it is very challenging to probe exper-
imentally. Computational studies, and particularly molecu-
lar dynamics (MD) simulations, can play an important role
in revealing the atomistic details of crystal nucleation.
Unfortunately, one is hampered by the timescale problem.
The free energy barrier for creating a liquid-solid interface
makes the nucleation a rare event, which takes place on
macroscopic time scales which cannot be reached even by
the most powerful computers [6].
A number of simulation studies based on classical

potentials have been conducted. In these studies the time
scale barrier has been tackled either by using deep
quenches [7,8] that accelerate the crystallization process
but might also alter its dynamics [9], or by using enhanced
sampling methods [10]. However, even with the use of
enhanced sampling the computational cost is still too high
for a fully AIMD approach. On the other hand, the bonding
complexity of the systems strongly suggests the use of an
ab initio description.
An alternative that provides a good compromise between

the accuracy of density functional theory (DFT) and the
efficiency of empirical potentials is offered by machine
learning (ML) techniques [11]. In particular neural net-
works (NNs) [12] and Gaussian Process Regression [13]
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have been applied to the task of creating force fields for
condensed-matter systems. The ability of ML methods to
fit complex high dimensional functions has been exploited
to represent the potential energy surface as a function of
the atomic coordinates E ¼ EðfR1; R2;…; RNgÞ. One first
generates a large set of configurations, computes the
relative energy and forces with an ab initio method, and
then optimizes the ML algorithm in order to get an accurate
representation of the reference quantum mechanical data.
Machine-learning force fields have been already used for

studying silicon, starting from the work of Behler and
Parrinello on bulk Si [12,14]. Recently, also the atomistic
structure of the amorphous phase has been investigated with
similar methods. [15]. In a more ambitious project a general
purpose potential, based on PW91 DFT data, has been
developed [16]. Our objective is less ambitious as we focus
on a specific physical process, namely, crystallization.What
we loose in generality we hope to gain in targeted accuracy.
In order to describe the electronic structure of Si we

choose to use the strongly constrained and appropriately
normed (SCAN) functional [17], a novel exchange and
correlation (XC) functional. The advantage of this functional
is that being of the meta-generalized-gradient approximation
(meta-GGA) type it has a relatively modest computational
cost. A feature that has attracted our attention is the ability of
the SCAN XC functional to describe well the difference in
energy between the covalent and the metallic high pressure
β-tin structure [18]. The latter can be seen as an idealized
model for the kind of bonding that is expected in the liquid
phase. Furthermore, the β-tin to diamond energy difference
has been argued to be correlated with the melting temper-
ature [3]. The estimate of this energy difference by SCAN is
improved with respect to other DFT local and semilocal XC
functionals [18].
In order to build the force field, we use the Deep

Potential Molecular Dynamics (DeePMD) scheme devel-
oped by Zhang et al. [19,20], which has a design similar to
the first one proposed by Behler and Parrinello. Both
schemes use neural networks (NNs) to represent the
potential energy surface, which is written as the sum of
atomic energies, determined by the local environment.
DeePMD builds for every atom a local coordinate frame
in order to preserve all the natural symmetries. We refer the
readers to Ref. [19] for further details.
Once the architecture of the neural network has been

defined, we have to optimize the parameters of the NN
based on a reference data set, the so-called training set. The
choice of these configurations is a crucial step. Even if NNs
are able to handle the complexity of quantum-mechanical
data, as they are good interpolators, they cannot predict
the energies of structures which are distant from the ones
used for training [11]. Usually, this set is composed of
configurations from AIMD simulations, together with zero-
temperature structures with randomly displaced atoms, and
configurations whose energetic might be relevant for the

process of interest [21], starting from all the different
phases involved [22]. In the nucleation process interfacial
energies play an important role, and it would be unwise to
estimate them from the solid and liquid configurations only,
where no such information is present. This task might be
even harder if one does not know the final structure the
system is going to crystallize into, or whether different
phases are involved in the process. In this case, one should
include every different crystal structure and the relative
interfaces and defects in the training set.
In order to address this problem, we propose to identify

the relevant configurations from classical simulations,
with the help of enhanced sampling techniques. Then we
compute their energy and forces with DFT calculations
using SCAN, and finally we use this reference data set to
train the DeePMD potential. Thanks to the intrinsic scal-
ability given by the energy decomposition [19], once the
NN has been trained on a relatively small system we can
use it to study bigger system sizes and out-of-equilibrium
processes like crystallization that could not be investigated
otherwise with DFT accuracy.
In order to collect the reference data set, we use

metadynamics (MetaD) [23] in its well-tempered variant
(WTMetaD) [24]. This is an enhanced sampling method
that is based on the identification of appropriate order
parameters or collective variables (CVs) that describe the
slow modes of the process. A repulsive potential that is a
function of the chosen CVs is built on the fly in an iterative
process that has rigorously been shown to converge [25] to
the free energy surface (FES) expressed as a function of the
CVs. In this way the system is pushed out of metastable
states and large energy barriers can be overcome.
In the present context, MetaD can be viewed also as an

efficient method to select the relevant configurations,
which occupy a small portion of the configurational
space. These are the ones located at the free energy
minima and the states between them. The use of
WTMetaD acts as a filter that avoids including in the
training set configurations that are not relevant to the
phenomenon under study. This procedure is in line with
the philosophy underpinning our work. Namely, we want
to build a potential that is apt at describing the nucleation
process rather than an all purpose potential. So far, the use
of MetaD as a tool to collect the training structures has
been applied only to very small systems. Unfortunately,
the procedure put forward in Ref. [26] cannot be extended
to condensed matter systems.
In the case of crystallization several CVs have been

suggested [27]. We report here only two paradigmatic
examples. The classical work of Frenkel [28] proposed to
use the Steinhardt order parameters, which are a description
of local bond order in terms of spherical harmonics [29].
Then the CV is built as the average of these local quantities.
More recently Niu et al. have taken a different point of view
and employed the intensity of the main peak of the Debye
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scattering function, which is a way to enforce the coherence
inherent to crystalline order [30].
Here we use a variant of the Niu et al. CV in order to

further improve its ability to describe nucleation and to
identify the atoms that have undergone the transition. This
can be achieved by separating the Debye equation for the
structure factor [31] into individual atomic contributions:

SðqÞ ¼ 1þ 1

N

XN

i¼1

XN

j≠i

sinðqrijÞ
qrij

¼ 1

N

XN

i

SiðqÞ: ð1Þ

In this way we can assign to every atom its own structure
factor Si defined as

SiðqÞ ¼ 1þ
XNn

j≠i

sinðqrijÞ
qrij

; ð2Þ

where the sum is over all the Nn neighbors of atom i which
are contained in a sphere of radius rc. As in Refs. [32,33]
we add a damping function to alleviate the termination
effects due to the finite cutoff. Details are reported in the
Supplemental Material (SM) [34].
We find out that the value of Siðq1Þ, where q1 is the solid

phase first peak, is able to distinguish clearly between
solidlike and liquidlike particles. This suggests the use of
the local structure factor as a fingerprint (see also Fig. SM-4
for an example [34]) and the use of a CV which counts the
number of solidlike atoms. From Fig. 1 we identify the
atoms with Siðq1Þ ≥ q̄ as solidlike. In our case we choose
q̄ ¼ 1.25. Employing the local structure factor instead of
the global one inherits the ability of the latter to discrimi-
nate between structures, but it describes also the locality
typical of the nucleation.

Using the number of solidlike particles as CV (see SM
[34]) we performed a Well-Tempered MetaD simulation
that is driven by the Stillinger-Weber (SW) classical
potential, which is not perfect but gives a reasonably
balanced description of the solid and the liquid phase
[35]. We use a system of 216 atoms and run isothermal-
isobaric simulations [36–38] at ambient pressure and the
experimental melting point. The SW potential by con-
struction reproduces well this temperature. MD simulations
have been performed using LAMMPS [39], coupled with
PLUMED2 [40] for the calculation of the CVs and for the
MetaD bias. Additional details can be found in the SM [34].
In Fig. 2 we illustrate howWTMetaD is able to explore a

large number of configurations while the standard MD
approach samples a limited number of conformations of the
metastable solid and liquid states only. Of particular value
for the study of nucleation is the large number of con-
formations harvested in the transition region where crystal-
line nuclei, solid-liquid interfaces, and defective structures
appears. This wealth of disparate but relevant configuration
provides an ideal training set for the purpose of studying
crystallization.
From the metadynamics simulations, training configu-

rations are extracted every 50 fs. This ensures that they are
statistically uncorrelated. By construction these configura-
tions will be distributed as in Fig. 2. We then compute the
corresponding energy and forces from first-principles
simulations, using SCAN. Electronic structure calculations
are performed using the CP2K software with the setup
reported in the SM [34,41–48].
We converge the calculations with respect to k-points

sampling and to energy cutoff for both the cubic diamond

FIG. 1. Distribution of the local structure factor Siðq1Þ in the
liquid and the solid phase. Inset: Debye structure factor computed
with a cutoff radius of 8 Å, the dashed line marks the peak located
at q1 used for the calculation.

FIG. 2. Distribution of the configurations as a function of the
structure factor intensity of the first peak, in a well-tempered
metadynamics simulation at 1700 K. The distributions from MD
simulations in the liquid and the solid are also reported. All the
distributions are normalized by the number of points, solid and
liquid are also scaled by a factor of 10. Examples of the structures
found in the simulation are reported above the distributions.
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and the b-Sn structures, obtaining an accuracy lower than
1 meV=atom.We find that it is particularly important to use
a dense k-point grid to reproduce correctly the metallic
properties, despite the relatively large system size.
Then, the potential is trained using the DEEPMD-kit

package [49] (the architecture and the details of the
optimization are reported in SM [34]). The root mean
square errors (RMSEs) on the testing set are equal to
2.1 meV=atom for the energies and 130 meV=A for the
forces. It is remarkable that the error made in the inter-
mediate configurations is only slightly larger than in the
equilibrium solid and liquid configurations (Fig. SM-2
[34]). The error in the energy is of the same order of
magnitude of the DFT accuracy in spite of the fact that the
energy range covered (almost 1 eV=atom) is very wide.
This implies that both phases are described with a similar
accuracy. Also the agreement between the radial distribu-
tion functions obtained with DeePMD and AIMD refer-
ences is remarkable (Fig. SM-3 [34]).
The results are robust with respect to the architecture of

the neural networks and converge quickly with respect to
the number of training configurations (Fig. SM-1 [34]).
Furthermore, as discussed in the SM, the generality of the
training set can be assessed using an ensemble of poten-
tials, and improved with new configurations if needed.
Once we have trained our MetaD-based NN potential we

can study the crystallization process. From the many
solidification and melting processes observed in the sim-
ulations, we can reconstruct an ab initio free energy surface
at different temperatures around the melting point, showing
how the relative stability between the liquid and the solid
changes with the temperature (Fig. 3).
In addition, this allows computing the entropy and

enthalpy difference upon phase transition (see Table I).
The agreement of these quantities with the experimental
data is much better with respect to the one obtained with
Stillinger-Weber, even if the latter was explicitly para-
metrized to reproduce the melting temperature and the
radial distribution function of the liquid. The melting
temperature that we find for the DeePMD scheme is very
close to the one reported for the SCAN XC potential [3].
This value overestimates the experimental one by 10%,
indicating that practical XC functionals still need to be
improved.
It is possible to investigate also the dynamical properties

of liquid Si. As an example we report the value of the self-
diffusion coefficient, computed from the asymptotic limit
of the atomic mean square displacement. We find a value of
D ¼ 2.35 × 10−4 cm2 s−1 in good agreement with the
indirected experimental measure reported in Ref. [52] of
ð4.0� 0.5Þ × 10−4 cm2 s−1. The measurements are related
to the melting temperature of the DPMD force field and the
experimental one. For comparison we report also the value
obtained with the SW potential at its melting point, which is
0.69 × 10−4 cm2 s−1 [53].

We are also able to follow the early stages of the crystal
nucleation, observing the formation of the clusters that
eventually lead to crystallization. To do so we need to
simulate large systems, in order to avoid the nuclei interact-
ing with their periodic images. Then we use a clustering
technique to identify the clusters in the system [54], using the
local structure factor as a fingerprint. In Fig. 4 we reported a
few snapshots of such a process. The shape of the clusters is
rounded, and the eigenvalues of the inertia tensor are very
close to one another. However, especially in the larger
cluster, crystalline facets can be observed and indexed as
in the bottom right example of Fig. 4.
As a comment to the results, we believe that an ab initio

based approach can better describe the complex conforma-
tions that are present in nucleation, with respect to
empirical force fields like the SW potential. Moreover,
with the improvement in exchange-correlations functionals
our approach can be made systematically more accurate.
Not to mention the fact that potentials for multicomponent
systems can be easily constructed. In addition, in this way

FIG. 3. Gibbs free energy as a function of the intensity of the
first peak of the structure factor, for different temperatures around
the melting point. The energy scale is in units of kBTm. The free
energy profiles have been determined using the reweighting
procedure of Ref. [50]. They are computed from simulations of a
216 atom system. Finite size effects are not included, and thus the
values of the barriers have to be thought of as lower bound
estimates.

TABLE I. Thermodynamic properties at the melting point, for
the SW potential and the MetaD-based NN potential trained on
SCAN DFT data. Experimental data are taken from Ref. [51].

SW DeePMD EXP

TM [K] 1705 1855 1685
ΔSsl [kB] 2.39 3.69 3.59
ΔHsl [kBTM] 2.22 3.71 3.58
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one has an understanding of the DFT error and a control
over the trustworthiness of the results.
In this Letter we have shown how metadynamics can be

used as an effective tool that selects the relevant configu-
rations to train neural network-based potentials for studying
rare events. This approach can be applied to condensed
matter systems, and to reactive events and biophysical
systems as well, where the training set might be even harder
to design with a more standard approach. In addition, we
have shown how the long-range order information given by
the structure factor can be encoded into a local variable that
can be used to efficiently drive the nucleation process. This
represents a promising avenue for studying crystal nucle-
ation in solution, where a global parameter cannot be used
to drive the process.
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