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Stochastic reconstructions based on universal correlation functions allow obtaining spatial structures
based on limited input data or to fuse multiscale images from different sources. Current application of such
techniques is severely hampered by the computational cost of the annealing optimization procedure. In this
study we propose a novel hierarchical annealing method based on rescaled correlation functions, which
improves both accuracy and computational efficiency of reconstructions while not suffering from
disadvantages of existing speeding-up techniques. A significant order of magnitude gains in computational
efficiency now allows us to add more correlation functions into consideration and, thus, to further improve
the accuracy of the method. In addition, the method provides a robust multiscale framework to solve the
universal upscaling or downscaling problem. The novel algorithm is extensively tested on binary (two-
phase) microstructures of different genesis. In spite of significant improvements already in place, the
current implementation of the hierarchical annealing method leaves significant room for additional
accuracy and computational performance tweaks. As described here, (multiscale) stochastic reconstruc-
tions will find numerous applications in material and Earth sciences. Moreover, the proposed hierarchical
approach can be readily applied to a wide spectrum of constrained optimization problems.
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Spatial correlation functions (CFs) are universal structure
descriptors utilized in a multitude of research areas: stat-
istical physics and material sciences [1–4], material design
[5,6], astrophysics [7], rock physics [8–10], soil science
[11–13], food engineering [14], environmental studies [15],
biological studies [16,17], and hydrogeological studies [18]
to name a handful. This popularity can be explained by a
number of important properties and practical usability. First,
an extensive theoretical background relating to spatial
structure and CFs, as well as macroscopic physical proper-
ties have accumulated over the last 60 years [1]. Second, the
knowledge of CFs for a givenmaterial provides a possibility
to recover its structure using the so-called stochastic
reconstruction procedure [19–21], which is a widely useful
application [1,5,6,9,10,12–21]. Third, some CFs can be
obtained experimentally from in situmeasurements, such as
x-ray tomography [22], nuclear magnetic resonance [23]
and small angle x-ray or neutron scattering (SAXS or
SANS) [24], or even fused with direct imaging information
for reconstruction purposes [25–28]. Finally, based on
stochastic reconstructions and the rescaling property of
correlation functions one can fuse multiscale images into
a single image [29,30], thus solving a long-standing conun-
drum of field-of-view versus imaging resolution trade-off,
specific for any experimental setup.

Despite the numerous powerful aforementioned applica-
tions, stochastic reconstructions based on CFs have been
criticized from the viewpoint of other reconstruction
techniques such as multiple-point statistics (e.g., [31]) or
machine learning (e.g., [32]) based methods. Usually,
identified weaknesses include low accuracy (due to insuffi-
cient information contained in utilized CFs) and high
computational cost. Indeed, starting from the seminal work
of Yeong and Torquato [21] based on simulated annealing
[33], the quality of reconstructions suffered from decreased
[34] or overestimated [29] connectivity (depending on the
structure and phase ratio of the reconstructed material),
artificial anisotropy [35], inability to address anisotropy
effectively, etc. Since then, themajority of the problems have
been resolved; e.g., the introduction of cluster function into
stochastic reconstruction has allowed for the attainment of
an unprecedented accuracy [36], usage of directional CFs
solved the problem of anisotropy [37–39]. Moreover, the
work of Gommes et al. [40,41] established a workflow to
access the information content of any set of the correlation
function for a given structure, thus, providing a basis to
choose CFs needed for a problem at hand.Most importantly,
it is now rigorously confirmed that only the first moments of
the CFs contain most of the information [36,41,42], thus,
justifying the use of two-point statistics which sufficiently
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minimizes computational efforts. As the usual aim of
stochastic reconstruction is not to recreate the exact copy
[43], but merely create a statistical copy with similar
macroscopic properties [1,44], approximately 50%–70%
of the information content may suffice for successful out-
comes [41]. The less than 100% percent information
poses a challenge to CF-based reconstructions preferential
annealing to less desirable ground states also referred to as
degenerate states [41,45]. The second major problem of
computational efficiency, mainly arising due to the slowness
of the simulated annealing optimization [33], was mitigated
partially by frozen-state annealing [46] and its later mod-
ifications [47,48]. These methods first anneal the coarsest
features of the structure and then freeze themduring a further
annealing of the finer details. The overall computational
gains are partially offset by the complexity of the freezing
protocol and coarse-fine grid jumps, moreover, this
approach needs the image of the original structure and,
thus, is unable to function based on a set of CFs alone (which
is a prerequisite to utilize, for example, SAXS measure-
ments). Still, the frozen-state annealing idea is useful, as it
also helps to circumvent the degenerate states issue by
starting with coarser features, i.e., placing first the major
features accurately and adding the details later [49].
In this Letter, we propose a novel CF-based reconstru-

ction algorithm that helps to solve the aforementioned
general problems and abandon the frozen-state protocol.
Using the idea of correlation function rescaling [29], we
hierarchically reconstruct the structure starting from its
coarser to a finer representation using only input CFs set.
Below, we first describe the details of our methodology and
with real images demonstrate how it results in faster and
more accurate reconstructions. Summarily, we highlight the
most important applications and the outlook of potential
usage to address other relevant problems.
For the purposes of this Letter, we limit our consideration

to 2Dbinary structures (consisting of two phases), e.g., white
pores and black solids in case of porous media. A conven-
tional set of three types of two-point correlation functions
will be used: (1) the two-point probability function S2ðrÞ [1]
describing the probability that two points separated by a
vector displacement rðx1; x2Þ between x1 and x2 lie in the
white phase, and the lineal-path functionL2ðrÞ [50] describ-
ing the probability that the whole segment r lies within
the either (2) white or (3) black phase. As a basis, we utilize
the modified Yeong-Torquato technique [13,21,38,51]. The
structure is assumed statistically homogeneous, so that
we can consider r as a scalar distance between pixels. We
calculate S2ðrÞ and L2ðrÞ functions in two orthogonal and
two diagonal directions, thus, giving 12 independent CFs for
each 2D image, which are then used separately during
reconstruction [38].
For any set of correlation functions considered in Yeong-

Torquato technique, matching correlation functions of a
given realization with a target CFs set is based on pixel

permutations. If a set of two-point correlation functions
used in reconstruction is provided in the form of fα2ðrÞ,
where α is a type of CF and r is a segment of varying
length, the difference between two realizations of the
structure can be expressed as the sum of squared
differences [21,51]:

E ¼
X

α

wα

X

r

½fα2ðrÞ − f̂α2ðrÞ�2; ð1Þ

where fα2ðrÞ and f̂α2r are the values of the correlation
function sets for two realizations (where the former
represents a reference set while the latter represents current
reconstruction state), wα are weighting parameters chosen
based on the input of each CF into energy E for disordered
structure [51]. The energy E in Eq. (1) is minimized by the
simulated annealing optimization. The Metropolis algo-
rithm is used [52] to determine the probability of accepting
any permutation p:

pðEold → EnewÞ ¼
�
1; ΔE < 0

expð−ΔE=TÞ; ΔE ≥ 0;
ð2Þ

where T is the so-called “temperature” of the system, and

ΔE ¼ Enew − Eold: ð3Þ
At initialization, the temperature is chosen so that the

probability p for ΔE ≥ 0 equals 0.5 [21]. The following
cooling schedule based on geometrical progression is used:

TðkÞ ¼ Tðk − 1Þλ; ð4Þ
where k is time step and λ is a parameter smaller than
but close to unity (λ ¼ 0.999999 for all reconstructions
presented here). An optimized pixel permutation approach
based on interface choices [53] was used. Periodic boundary
conditions were applied for CFs evaluation. The recon-
struction procedure was terminated after 106 consecutive
unsuccessful permutations. Thus described reconstruction
methodology according to Gerke andKarsanina [51] will be
referenced as GK from now on.
The general scheme of the novel hierarchical annealing

(HA) method with rescaled correlation functions is shown
in Fig. 1. A full set of 12 CFs is computed based on the
original 2D cubical image representing an original structure
which is the only input data for reconstruction procedure.
To test the method on a wide variety of natural and
artificial porous media structures we chose three samples
(see Supplemental Material [54]): ceramic [55], shale, and
sandstone [56]. Each input CFs set is then rescaled by
coarsening (removing points) [29] according to a number of
rescaling steps m ¼ 2 (note that it actually means three
hierarchical levels, as at the final scalem ¼ 0, see Fig. 1 for
explanations). Similar to GK at first coarsest scale a random
mixture of pixels is created with a phase ration based on
the zeroth moment of CFs. After 105 þ N2 consecutive
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unsuccessful permutations are reached, this first annealing
step is finalized and each pixel is substituted with four
pixels to move to the next hierarchical level. Starting from
the second level the temperature T is ¼ 0. The latter
ensures that permutations of already placed coarse features
are penalized leading to a frozen-state annealing type of
behavior. Annealing is proceeding with the next scale
correlation functions m ¼ m − 1 until the same escape
condition is reached. The final scale m ¼ 0 is annealed
until the same criteria as for GK method is reached (to be
directly comparable to GK results), i.e., 106 consecutive
unsuccessful permutations.
Five stochastic replicas are produced for each original 2D

image for both GK and HA methodology to explore
variability. All replicas are shown in the Supplemental
Material [54]. Figure 1 depicts the best ceramic HA
reconstruction, Fig. 2 reports the best shale and sandstone
replicas best in metrics that were used to assess the accuracy

of standard GK and novel HA methods. Comparison
metrics [Fig. 1 included (1) final total energy [Eq. (1)]] at
the end of reconstruction; (2) the error according to two-
point cluster function [computed as squared difference
similar to Eq. (1)] [51]; (3) difference in pore morpho-
logical parameters [56] between a replica and the original
roundness, convexity, and elongation [computed as
horiginali=hreconstructioni − 1, where h� � �i refers to the
average for all separate pore objects]. The first metric shows
how easily the system can be brought to the ground state,
thus, being a direct measure for stochastic reconstruction
process effectiveness. The second metric is both a measure
of pore connectivity and accuracy, as C2 is known to add
significant additional information to CFs set [36]. The final
metric based on separate pore morphology is sensitive
to the shape of the reconstructed objects, as well as to the
macroscopic physical properties computed based on the
reconstruction [56,57].

FIG. 1. The general scheme of hierarchical annealing method (HA) and the comparison of its results against nonhierarchical annealing
(GK) reconstructions based on five different metrics. On the scheme, N refers to the image width in pixels,m is the hierarchical layer, A
is the area of a separate pore object in pixels, P is the perimeter, and Phull is the convex hull, L is the length, and W is the width of the
circumscribing rectangle. The final results for HA and GK are the best reconstructions for these methods among five replicas.
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For each sample, we chose a single replica (for both GK
and HA methods) which is the best in the aforementioned
statistics [13]. The results in all metrics for these replicas
are shown in Fig. 3 and Table I. The best HA surpass GK
replicas along all the metrics used. The final energies
terminating the annealing procedures are lower for HA
method. Overall connectivity and accuracy according to
cluster CF are approximately an order of magnitude better
for HA than for GK replicas. Moreover, morphological
parameters for pores were significantly better for HA
(Fig. 3). All morphological errors for HA are negative
(i.e., on average underpredicted, compared to the original),
which points to or indicates a drawback in the current
implementation pixel permutation choices are more suited
for assembling the clusters of pores, while later HA stages
require some disassembling to form smaller and single-
pixel objects.
To further demonstrate capabilities of the HA method,

additional reconstruction results for “classical” testing
images are provided in the Supplemental Material [54].
It also includes visualizations of reconstructions at different
hierarchical steps m and all final results for three materials
discussed here.
While the improvements in the quality of reconstruction

can be clearly seen from the above statistics, the most
striking difference is actually in CPU time needed to
perform reconstructions. On average (computed based on

five replicas) about an order of magnitude gain was
obtained. Note that the exact comparison of computational
efficacy is hampered by the complex influence of annealing
termination parameters [29]; i.e., termination by a lower
energy threshold or higher number of unsuccessful iter-
ations can only negligibly improve the accuracy while
drastically increasing computational effort. Additional
research is needed to explore these termination criteria,
especially between hierarchical jumps (decreasing m in
HA), which may improve the efficacy of the HA method
well beyond currently demonstrated gains. Here, we limited
our study to the reconstruction of 2D images only, where
with increasing m the size of the system decreases as e1=2,
while for 3D applications such a decrease will be e1=3

resulting in even more speed-up compared to nonhierarch-
ical annealing.
From the visual analysis of HA stochastic replicas,

one could conclude that reconstructions are still of an
imperfect quality. This is definitely due to the insufficient
information content of S2ðrÞ and LðrÞ directional CFs
employed in this work. We argue that this again high-
lights the importance of the proposed HA technique; with
significantly improved computational efficacy one can use
as many CFs as necessary to increase the information in
CFs reconstruction set to the necessary content. With the
inclusion of parallel CFs computation [58] and updating [59]
techniques, HA provides a framework to add additional
descriptors into the reconstruction procedure, including such
computationally heavy CF as C2ðrÞ cluster function.
Another important aspect of the HA method lies in its

ability to reconstruct directly fromCFs without any need for
an original image, as a prerequisite for the frozen-state type
of accelerated annealing procedures. Not only does this

FIG. 2. Shale and sandstone 2D images (from left to right):
original images, best HA, and best GK reconstructions.

FIG. 3. Comparison of the best reconstructions using HA and
GK methods for each of the three original 2D images based on
morphological metrics explained in Fig. 1.

TABLE I. Statistics for the best reconstructions using HA and GK methods for each of the three original 2D images.

Shale Ceramics Sandstone

The best replica for the sample, number GK-4 HA-2 GK-1 HA-1 GK-2 HA-3

Cluster CF error 0.000 969 0.000 387 44 0.036 382 0.008 05 0.000 389 1.13E-05
Final energy [according to Eq. (1)] 8.63E-07 7.29E-07 3.98E-06 8.16E-07 2.33E-06 1.9E-06
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allow us to reconstruct frommultiple (multiresolution) input
images (by creating ensemble CFs [30]), but also to utilize
experimental CFs obtained using SAXS and SANX, x-ray
tomography, or other methods. Additionally, a combination
of experimental CFswith those frommultiscale (2D) images
enables a more accurate reconstruction of submicron and
nanoscale materials, e.g., nanomaterials [60], as well as
conventional [61] and unconventional [62] hydrocarbon
resources. Most importantly, fast HA stochastic reconstruc-
tions from CFs alone provide a possibility to store large 3D
image data (e.g., about huge geological bodies or tomog-
raphy data sets) by way of spatial correlation functions [29],
so that a structure under question can be recreated easily for
any analysis to store statistical descriptors.
One of crucial CF abilities in addition to describing and

storing structural information lies with their inheriting
multiscale nature [29], that can be measured from images
of different resolution or experimentally in situ [63]. With
orders of magnitude faster HA-based stochastic reconstruc-
tions, it is possible to make the multiscale image fusion [29]
widely applicable in practice. Note that rescaling of the CFs
can be performed not only to coarsen, but also to obtain
finer CFs. This can be done by simple interpolation [29,30],
or by adding information from higher accuracy sources
(such as higher resolution imaging with electron micros-
copy or nanoscale in situ SAXS measurements). That said,
HA-based stochastic reconstructions with correlation func-
tions provide a fully multiscale framework necessary to
solve field of view–imaging resolution trade-off and, more
generally, upscaling or downscaling problem.
In summary, we have presented a novel hierarchical

annealing method with rescaled correlation functions,
that provides a framework to produce fast, more robust
multiscale stochastic reconstructions based on input CFs
alone. By mitigating the long-standing computational
efficiency problem, the HA algorithm potentially enables
us to transform CF-based reconstructions into a widely
applicable technique. By significantly reducing the com-
putational burden we allow including more correlation
functions into statistical description and reconstruction
procedures. Notably, HA should severely reduce the influ-
ence of annealing convergence problems after adding
numerous CFs, as the coarsest level where themain structure
assembling is produced, is much smaller compared to the
reconstructed image size.
While in this Letter we focused on 2D binary (two-

phase) structures and utilized only a very limited set of
CFs, our novel methodology is generally applicable to the
reconstruction problem of any complexity. Multiphase
materials, such as rocks consisting of numerous mineral
and organic phases, or composites, could be reconstructed
in the same manner as described here. As 2D image
reconstructions allowed for general proof of concept and
to perform powerful, yet simple morphological pore
analysis, the generalization to 3D reconstructions is

straightforward and will be performed in exactly the same
manner as for nonhierarchical reconstructions, e.g.,
[21,51]. With additional effort, the HA-based methodology
can be extended to statistically inhomogeneous structures
[64], something we completely omitted in the discussion
here due to (reasonably considering our original 2D
images) the assumption of image stationarity. As already
mentioned, a much larger number of correlation functions
and other statistical descriptors can be utilized in the
reconstruction procedure, corroborating the convergence
of the Yeong-Torquato technique as robust after proper
weighting as in Eq. (1) [51]. We highlight the importance of
solving the problem of information content for other
relevant CFs, as only the S2ðrÞ CF solution exists at the
moment [40,41]. The currently discussed implementation
of the HA methodology has a few drawbacks, however,
namely, the precise criteria to perform hierarchical steps to
reduce scale m, as well as an optimal number of such
hierarchical steps m, which are expected to further improve
the robustness of the reconstruction resulting in a signifi-
cant speed-up. We hope to address these drawbacks as we
research further.
The usage of the proposed hierarchical optimization

approach is not limited to stochastic reconstructions alone
and can be effectively applied to a wide spectrum of
constrained optimization problems.
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