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Sliding phases have been long sought after in the context of coupled XY models, as they are of relevance
to various many-body systems such as layered superconductors, freestanding liquid-crystal films, and
cationic lipid-DNA complexes. Here we report an observation of a dynamical sliding phase superfluid that
emerges in a nonequilibrium setting from the quantum dynamics of a three-dimensional ultracold atomic
gas loaded into the P band of a one-dimensional optical lattice. A shortcut loading method is used to
transfer atoms into the P band at zero quasimomentum within a very short time duration. The system can be
viewed as a series of “pancake”-shaped atomic samples. For this far-out-of-equilibrium system, we find an
intermediate time window with a lifetime around tens of milliseconds, where the atomic ensemble exhibits
robust superfluid phase coherence in the pancake directions, but no coherence in the lattice direction, which
implies a dynamical sliding phase superfluid. The emergence of the sliding phase is attributed to a
mechanism of cross-dimensional energy transfer in our proposed phenomenological theory, which is
consistent with experimental measurements. This experiment potentially opens up a novel venue to search
for exotic dynamical phases by creating high-band excitations in optical lattices.
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A sliding phase [1] mechanism has been proposed in the
study of weakly coupled stacks of XY models [2,3], which
was introduced to characterize intricate phase transitions in
a broad range of many-body systems such as layered
superconductors [4,5], freestanding liquid-crystal films
[6,7], and even biological molecules [8,9]. In the sliding
phase, the system behaves like a stack of decoupled
superfluid layers in spite of the physical interlayer
Josephson coupling being finite. With field theory analysis,
it has been shown that the sliding phase typically appears
under extreme conditions for thermal equilibrium systems
[1] or quantum ground states [10–15], causing a grievous
challenge in experimental implementation.
Recent experimental progress in synthetic quantum sys-

tems has achieved unprecedented approaches to investigate
fascinating collective phenomena in controllable quantum
dynamics, such as light-induced nonequilibrium supercon-
ductivity [16,17], time crystals in trapped ions [18], corre-
lated quantum kinematics in reduced-dimensional systems
[19–21], and many-body localization with cold atoms in
artificial light crystals [22–27].While a complete theoretical
framework to describe nonequilibrium phase transition is
still lacking, a formal analogy between temperature and time
by comparing partition function in the thermal ensemble and
unitary evolution operator in quantumdynamics allows such
concepts in statistical physics as many-body phases and
condensation, to generalize to the time domain [28,29].

(a)

(b) (c)

(d)

FIG. 1. (a) Experimental configuration for a 1D P-orbital lattice,
where atoms form discrete pancakes. (b) The system is probed in two
ways. Probe 1: probe with a laser beam along the ẑ direction after the
bandmapping. Probe 2:with the probe beamalong the x̂ direction, the
image is taken by switching off the potential abruptly within 30 ns.
Atoms are loaded to the zero quasimomentum state of the P band
through a designed pulse sequence, with an example shown in (c) for
lattice depthV0 ¼ 5Er (Er is one-photon recoil energy).We thenhold
atoms for time t0, and the absorption images after time of flight (TOF)
are taken in two directions. (d) The atom proportion in S and P band.
Error bars are given by the standard deviation of five experiments.
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Here, we report on an observation of a sliding phase
superfluid in a dynamical system of ultracold atoms loaded
into the P band of an optical lattice. Our Letter goes beyond
previous studies in P-band optical lattices focused on static
phases [30–32], by considering nonequilibrium aspects.
We have a three-dimensional quantum gas confined with a
one-dimensional lattice, sliced into “pancakes” (Fig. 1).
Using an adiabatic short passage [33,34] to load atoms into
the zero quasimomentum state in the P band, the system is
driven far out of equilibrium. The loading method has been
used in our previous experiments to study atomic interfer-
ence between different energy bands [35] and longtime
evolution [36]. As in previous works, the coherent fraction
is extracted from the interference pattern to explore phase
coherence [37–39]. During the rethermalization process, a
metastable region is observed, where the atomic sample
shows strong phase coherence in the pancake directions,
but no coherence in the lattice direction. These observations
imply the first experimental discovery of the sliding phase
superfluid in the time domain, which is extremely chal-
lenging to reach in equilibrium according to the field
theoretical analysis [1,40]. This Letter may also shed light
on the high-Tc mechanism in light-probed cuprates [16,17].
Experimental procedure.—The experiment is performed

with a Bose-Einstein-Condensate (BEC) of 87Rb prepared
in a hybrid trap with the harmonic trapping frequencies
ðωx;ωy;ωzÞ¼2π×ð28;55;60HzÞ [34]. A one-dimensional
optical lattice is produced by a standing wave with the
lattice constant d ¼ π=k ¼ 426 nm along the x axis with k
as the wave number. As shown in Fig. 1(a), atoms are

confined in more than 50 discrete pancakes in the yz plane,
and the sizes of the condensate in the ŷ and ẑ directions are
about Ly ¼ 15.6 and Lz ¼ 14.9 μm, respectively. The
number of atoms in the trap is about 105.
A shortcut method with the designed pulse sequences is

applied to load atoms into the P band of the optical lattice
(see Fig. 1 and Supplemental Material [41]). The loading
pulse sequence consists of two sets of pulses whose nodes
are shifted in the x̂ axis by half of the lattice constant [33].
We stress here that, after loading to the zero quasimomen-
tum state of the P band, the quantum system is driven to a
far-out-of-equilibrium but at the same time phase-coherent
state. The short-time collisional dynamics of P-band
bosons has previously been observed [42]. We hold the
condensate in the P band for a certain amount of time t0 and
let the system evolve, then the TOF images are taken after
28 ms of free flight in two probe directions—probe 1 and
probe 2, to be described below.
For the probe from the ẑ direction (probe 1), the lattice

potential is switched off adiabatically, this band mapping
procedure enables measurements of the atomic population
in each band. From such images at different times t0,
we can quantitatively determine the time-dependent pro-
portion of atoms between the S and P bands, as shown in
Fig. 1(d). We investigate the dynamical phase during the
decay process from the excited P band to the S band. The
probe from the x̂ direction is performed by an abrupt
nonadiabatic switch off of the lattice, as shown in Fig. 1,
which is referred to as probe 2. The distribution is analyzed
via a bimodal fitting, with a parabola superimposed on a

FIG. 2. Momentum distributions measured at three different holding times t0 ¼ 1, 60, 100 ms, along different directions. The images
shown in the first row represent experimental TOF measurements in the xy plane by probe 1 (see main text), and the corresponding
momentum distribution in the central line along the x̂ direction is given in the second row with blue dots. The red solid line gives a full
fitting line, while the green dashed line gives the distribution of the thermal component. Atomic distribution in the S band (P band) is
revealed in the first (second) Brillouin zone. The third row shows the atomic distribution along the central line in the ŷ direction for the
experimental images in the yz plane measured by probe 2. Experimental results shown here are taken at temperature 120 nK and lattice
depth V0 ¼ 5Er.
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Gaussian function [43,44]. From the bimodal fitting, we
extract the coherent fraction so that the phase coherence of
the dynamical many-body state can be inferred (see
Supplemental Material [41] for more details).
Observation of the sliding phase superfluid.—In order to

characterize the real-time dynamics after the P band gets
occupied, we measure momentum distributions in the
lattice (probe 1) and pancake (probe 2) directions at the
different holding times (Fig. 2). Since the system is
approximately rotation symmetric in the yz plane, the
momentum distribution in the ẑ direction is equivalent to
that in the ŷ direction and is thus not shown here. From the
time evolution, we identify three distinct dynamical
regions. At early time—the first stage—the system has
superfluid phase coherence in all three directions, which is
clearly demonstrated through the sharp peaks observed in
the momentum distribution shown in Fig. 2 at t0 ¼ 1 ms.
A bimodal fitting shows the system is coherent in all
directions. At late time—the final stage after about
100 ms—the quantum gas has rethermalized with a
complete loss of phase coherence. The bimodal fitting
(see Fig. 2) shows all atoms are thermal in the complete
absence of any condensed component. There is yet an
intermediate time region with significant time duration
where the phase coherence of the quantum system survives
partially. The bimodal fitting in Fig. 2 at 60 ms shows that
there is a finite condensed component in the pancake
directions, but no such component in the lattice direction.
In this intermediate region, the phase coherence in the
lattice direction already disappears, whereas the coherence

in the pancake directions still persists, as revealed by
momentum distributions.
The evolution of phase coherence in the three stages is

described by a time-dependent correlation function,

hϕ̂†ðr; tÞϕ̂ðr0; tÞi
∝ expð−jrx − r0xj=ξx − jry − r0yj=ξy − jrz − r0zj=ξzÞ; ð1Þ

where ϕ̂ðr; tÞ is the bosonic field operator with spatial
coordinate r, and ξx;y;z is the superfluid correlation length in
the three directions. At the first stage, the three correlation
lengths diverge or, equivalently, are comparable with the
system size, whereas at the final stage, the correlation
lengths are all finite. In the intermediate time region, we
have divergent correlation lengths in the yz plane, i.e.,
ξy;z ∼ L with L the system size, but finite correlation length
in the x direction, i.e., ξx=L → 0. The peculiar dynamical
phase in the intermediate time region represents the long-
sought-after sliding phase superfluid—each pancake is
phase coherent, but the relative phase across different
pancakes is sliding. We find that the sliding phase phe-
nomenon is mainly supported by atoms in the P band (see
Supplemental Material [41]).
Phase lifetime.—To test the robustness of the dynamical

sliding phase superfluid, we measure its lifetime in dynam-
ics. In the experiment, the lifetime is defined from time-
dependent phase-coherent fractions in pancake and lattice
directions, which are extracted from the momentum dis-
tributions (see Supplemental Material [41]). Experimental

(a)
(b)

FIG. 3. (a) The coherent fraction measured by probes 1 and 2 with the different holding times for V0 ¼ 3Er, 5Er, 8Er, and 11Er,
respectively. (b) The time t0 for the atoms to lose coherence in lattice and pancake directions with different optical-lattice depths. The
blue “diamonds” are for the x̂ direction (lattice) by probe 1 and the “dotted” points are for the ŷ direction (pancake). Error bars are given
by the 95% confidence interval of fitting result. We find the time dependence of the coherent fractions fits to a form of Ae−t=τ with A as
the amplitude and τ as the characteristic time. The starting (ending) point of the sliding phase superfluid is defined by the time t0 when
the coherent fraction in the lattice (pancake) direction vanishes. With a relatively shallow lattice, say lattice depth V0 ¼ 3Er, there is
essentially no difference in the time dependence of the coherent fractions in lattice and pancake directions, which means a shallow lattice
does not support the intermediate sliding phase superfluid. With a deeper lattice, we find a significant difference in coherent fractions for
lattice and pancake directions, leading to two dynamical timescales and an intermediate time window supporting the sliding phase
superfluid. The sliding phase lifetime can be systematically improved upon, increasing lattice depth. Experimental results shown here
are taken at a temperature of 120 nK.
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results are shown in Fig. 3. We find that, with the total atom
number fixed in the experiment, there appears a critical
lattice depth (V0 ¼ 3Er in our experiment) beyond which
the sliding phase superfluid starts to emerge. We expect the
phase coherence starts to form from the pancakes in the trap
center, as those ones have relatively larger density and
consequently larger superfluid stiffness. It is worth empha-
sizing that at V0 ¼ 3Er the P-band tunneling is still
significant (around 0.5Er [30]). As we increase the optical
lattice depth further, the sliding phase superfluid becomes
more robust in dynamics. For both lattice and pancake
directions, a deeper lattice causes an overall decrease in the
decay time of the coherence, owing to the increase of the
interaction, which accelerates the condensate depletion.
But the coherence decay time for the lattice direction is
affected more compared to the pancake directions, leading
to a widening time window that supports the intermediate
sliding phase superfluid.
For completeness, we also examine finite temperature

effects on the dynamical sliding phase. We note here that
the temperature in the following refers to that of the atomic
gas before loading into the lattice. Comparing the results
at temperature T ¼ 90 nK [Fig. 4(a)] with T ¼ 120 nK
[Fig. 3(a)], the phase coherence gets more robust against
decay at lower temperature, as expected. The lifetime of the
sliding phase superfluid depends on the relative coherence
robustness in lattice and pancake directions. In the experi-
ment, we find the coherence decay time in the pancake
direction is more prone to temperature effects compared to
the lattice direction and increases more upon temperature
decrease. This leads to a systematic increase in the lifetime
of the intermediate sliding phase superfluid [see Fig. 4(b)]
as the system is cooled down to a lower temperature.

Phenomenological theory for the sliding phase.—The
emergence of the sliding phase in the time domain can be
qualitatively captured by a P-band model [30],

H ¼
Z

d2r

�X
j

p†
jðrÞ

�
−

ℏ2

2M
∇⃗2 − μ − V trapðrÞ

�
pjðrÞ

þ Jp
X
hj;j0i

p†
jðrÞpj0 ðrÞ þ g

X
j

p†
jp

†
jpjpj

�
; ð2Þ

where pj (p
†
j ) is the annihilation (creation) field operator,

hj; j0i represents nearest neighboring lattice sites, V trap is
the harmonic trap potential, Jp is the tunneling in the lattice
direction, and g represents the interaction strength. Atoms
are initially prepared at the P-band maximum, so the
system is dynamically unstable [45–47]. The coherence
in the lattice direction is then quickly lost, during which the
kinetic energy in the lattice direction can be converted into
kinetic energy in the pancake directions. This cross-
dimensional energy transfer is expected to be the order of
tunneling Jp. Since the gas is continuous in each pancake,
the in plane (yz plane) degrees of freedom would quickly
relax and acquire an effective temperature description.
The effective temperature of each pancake is estimated from
energy conservation to be

kBTeff ∼ ½NðℏωÞ2Jp=Lx�1=3; ð3Þ

which is obtained at the weak interaction limit (see
Supplemental Material [41]). Here kB is the Boltzmann
constant, ω is the trap frequency in the yz plane, N is the
total particle number, and Lx is the number of lattice sites
in the x direction. The number of thermal atoms is to the
order of

Ntherm ∼ N½ðJp=ℏωÞ2Lx=N�1=3: ð4Þ

The excessive atoms then remain condensed, giving rise to
the phase coherence in each pancake. With particle number
being fixed, we have a critical value of Jp, and consequently
a critical lattice depth, for the sliding phase to emerge, which
is qualitatively consistent with experimental observations. In
creating the sliding phase superfluid, the role of the P band is
to enable an efficient preparation of the BEC in a dynami-
cally unstable region using an adiabatic shortcut method
developed in our experiments [33]. Considering higher
bands with odd parity is expected to support the dynamical
sliding phase in a similar fashion.
On a microscopic level, modeling the sliding phase

phenomena demands theoretical treatment of correlated
dynamics in weakly coupled XY models beyond Gross-
Pitaevskii treatment to carefully take into account thermal
excitations. A quantitative description is expected to be
nontrivial, for example, whether thermal atoms could act as

(a) (b)

FIG. 4. (a) The coherent fraction with different holding times
for a lower atomic temperature T ¼ 90 nK at V0 ¼ 5Er. (b) The
time (t0) for atoms to lose coherence in lattice and pancake
directions at different temperatures, which is extracted from an
exponential fit of the coherent fraction (see Supplemental
Material [41]). By increasing the temperature, we find the
intermediate time window supporting the sliding phase gets
smaller with larger thermal fluctuations. The temperature depend-
ence indicates the sliding phase lifetime can be further improved
by cooling down to a lower temperature. Error bars are given by
the 95% confidence interval of fitting result.
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effective disorder, previously proposed to stabilize the
sliding phase [48], is worth consideration.
Conclusion.—To conclude, through quantum dynamics

of ultracold atoms loaded in the excited band, our mea-
surements unveil a sliding phase superfluid. This sliding
phase appears due to thermalization timescale separation
for discrete and continuous degrees of freedom. The
robustness of the dynamical phase has been tested by
increasing lattice depth and temperature. This potentially
opens up a novel route to search for metastable correlated
phases with ultracold atoms driven far out of equilibrium.
The intricate exotic phases challenging to achieve in
thermal equilibrium or the quantum ground state might
find their natural realization in nonequilibrium settings.
This Letter is also expected to shed light on understanding
the high-Tc mystery in the nonequilibrium layered
cuprates.
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