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The intermittency of a passive scalar advected by three-dimensional Navier-Stokes turbulence at a
Taylor-scale Reynolds number of 650 is studied using direct numerical simulations on a 40963 grid; the
Schmidt number is unity. By measuring scalar increment moments of high orders, while ensuring statistical
convergence, we provide unambiguous evidence that the scaling exponents saturate to 1.2 for moment
orders beyond about 12, indicating that scalar intermittency is dominated by the most singular shocklike
cliffs in the scalar field. We show that the fractal dimension of the spatial support of steep cliffs is about 1.8,
whose sum with the saturation exponent value of 1.2 adds up to the space dimension of 3, thus
demonstrating a deep connection between the geometry and statistics in turbulent scalar mixing. The
anomaly for the fourth and sixth order moments is comparable to that in the Kraichnan model for the
roughness exponent of 4=3.
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The mixing of a substance in a complex turbulent flow is
a generic and fundamental problem which serves as a
paradigm for many processes in nature and technology
[1–5]. The basic characteristic of such turbulent systems is
intermittency, manifested as intense and sporadic fluctua-
tions of the small scales, which are not captured by classical
mean field theories [6,7]. Two important examples of
intermittent systems are three-dimensional Navier-Stokes
(NS) turbulence [8,9] and 3D scalar turbulence [10,11]—a
short phrase for passive scalars mixed by NS turbulence.
Scalar turbulence provides a clear example of a generic

feature of nonlinear multiscale phenomena, namely the
connection between the multifractal scaling of statistical
moments of the physical quantity or field under consid-
eration to the geometric properties of the developing
coherent structures. This intimate connection extends
beyond fluid mechanics and can be found in various other
fields of physics and beyond, such as in fracture mechanics
of solids [12], nonlinear fiber optics [13], and bitcoin
markets [14]. In all such multifractal statistical processes,
quasidiscontinuous features characterized by steep cliffs or
fronts abound, for instance, see Fig. 1. In the context of 3D
turbulence, the influence of such cliffs on scalar intermit-
tency has remained an open question.
In the related problems of Burgers turbulence [15–17]

and the Kraichnan model [18] for a scalar advected by a
synthetic velocity field with no temporal memory, much
progress has been made on this particular subject [19–25].
However, the finite-time correlations of the advecting 3D
NS turbulence have impeded theoretical progress, with the
high spatial and temporal resolution requirements imposing

FIG. 1. Ramp-cliff structures in a scalar field, Θ≡ θ þGx,
here θ is the scalar fluctuation and ðG; 0; 0Þ is the mean gradient,
at Rλ ¼ 650 and the Schmidt number Sc≡ ν=D ¼ 1, where ν is
the kinematic viscosity of the fluid and D is the scalar diffusivity.
L is the size of the computational cube in one direction. The main
figure to the left plots four 1D profiles of Θ in the x direction,
along which the mean gradient is imposed. Examples for ramps
and cliffs are indicated by arrows as is the mean scalar concen-
tration profile by dashed lines. Profiles are shifted in steps of 6
units with respect to each other for clarity. The vertical solid lines
indicate the spatial positions for the magnifications of the scalar
fluctuation profiles plotted to the right. Grid resolution and
Kolmogorov length ηK are indicated.
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considerable challenges on empirical work. A large number
of experimental and numerical efforts continue to be
made on understanding scalar intermittency [26–34], but
the connection between the intermittent statistics and the
spatial geometry in 3D scalar mixing has eluded a clear
demonstration.
In this Letter, we report the precise quantification of

small-scale intermittency of a statistically stationary scalar
field, advected by 3D isotropic NS turbulence using direct
numerical simulations (DNS). We connect the statistical
footprints of the well-mixed scalar regions known as ramps
[35–41] to the steep cliff regions. The scaling exponents ζθp
of the scalar correlations, which will be defined further
below, saturate for moment orders above about 12, to a
constant ζθ∞, confirming that the almost-shocklike steep
scalar fronts characterize scalar intermittency in 3D NS
turbulence. We will also show that the spatial support of the
cliffs with a fractal dimension of DF ¼ 1.8 combines with
the saturated scaling exponent ζθ∞ to the space dimension,
yielding the result ζθ∞ þDF ¼ 3, where 3 is the space
dimension, thus demonstrating the intimate link between
the geometry and statistics in turbulent passive scalar
mixing.
We use data from pseudospectral DNS of isotropic

turbulence, computed using 40963 mesh points in a
periodic box of size L. A statistically steady state was
obtained by forcing the low Fourier modes of the velocity
field [42]. The Taylor-scale Reynolds number Rλ ¼ 650,
the Schmidt number Sc ¼ 1, and the Taylor-scale Péclet
number Peλ ≡ RλSc ¼ 650. The passive scalar (Θ) is
evolved using the diffusion-advection equation in the
presence of a uniform mean gradient G≡ ðG; 0; 0Þ along
the x direction, where G ≠ 0 is a constant, such that
Θ ¼ θ þGx, θ here is the scalar fluctuation. The grid
resolutionΔ=ηK ¼ 1.1,Δ being the grid spacing and ηK the
Kolmogorov length scale. The ratio of the magnitude of the
largest gradient computed in the DNS to the largest gradient
possible in the flow ðθrms=ηK ∼GL=ηK ∼ R3=2

λ Þ is ∼Oð1Þ,
where θrms ≡

ffiffiffiffiffiffiffiffiffi

hθ2i
p

and h·i denotes combined space-time
averages; hence the numerical resolution is adequate to
resolve the largest scalar gradients. We have used 21
temporal snapshots over 10 eddy turnover times, with each
snapshot rotated over 146 angular directions to extract the
isotropic statistics of the anisotropic scalar field. In total, we
have used 2 × 1012 data samples to obtain the results. For
details on the exact laws of the velocity and mixed velocity-
scalar statistics and statistical convergence tests on the data,
see the Supplemental Material [43] and Refs. [44–46].
The scalar signal organizes itself into conspicuous

patterns, as shown in Fig. 1, consisting of two distinctive
features: (i) ramp regions where the total scalar gradient
∇θ þG is quite small and (ii) high gradient cliffs which
are interspersed between ramps. The small figures on the
right demonstrate clearly that the scalar increment,
δrθ≡ θðxþ rÞ − θðxÞ, can jump by the order GL over

r≡ jrj that is just a few multiples of the Kolmogorov scale
ηK (which is also the smallest dynamically significant scale
in the scalar field). The ramp-cliff structures are connected
to the mean scalar gradient in the present DNS, and are
known to cause the breakdown of local isotropy in the
scalar field [10]. The cliffs are caused by the action of large
scales in the scalar field, even in the absence of a mean
gradient [10,47]. The generic existence of scalar cliffs in
turbulence suggests that these local spatial barriers to scalar
mixing have a significant impact on scalar intermittency.
In order to assess scalar intermittency, we define the

pth order scalar structure function, Spθ ðrÞ≡ hðδrθÞpi.
Because of the anisotropic mean scalar gradient, Spθ ðrÞ
depends on the separation vector r; however, the isotropic
sector hðδrθÞpi0 extracted from the SO(3) decomposition
[48,49] of Spθ ðrÞ depends solely on the separation distance r
[50]. In the inertial range, ηK ≪ r ≪ l, where l is the
macroscale, 30≤ r=ηK ≤300, hðδrθÞpi0 follow power laws,
hðδrθÞpi0 ∼ rζ

θ
p , where ζθp denote the pth order exponents

(see Supplemental Material for details [43]). The higher-
order exponents are determined using extended self-
similarity [51], by plotting hðδrθÞpi0 against hðδrθÞ2i0
for p > 2. We have verified that estimating ζθp using local
slopes, e.g., Ref. [34], or compensated structure functions,
e.g., Ref. [29], yields results consistent with the extended
self-similarity results.
The scaling exponents ζθp are plotted against moment

order p at Peλ ¼ 650 in Fig. 2(a). The exponents saturate to
ζθ∞ ¼ 1.2, indicated by the horizontal line, for p ≥ 12. This
is the clearest indication that the scalar fluctuations are
limited in magnitude only by the largest allowable gra-
dients in the field (largest temperature difference divided by
the smallest length scale). The ζθ∞ ¼ 1.2 curve intersects
the normal scaling curve at p ¼ 3.6. In some sense, it is
possible that this represents the situation for infinitely large
Peλ. Figure 2(b) compares the present exponents with
previous, lower Peλ, results. While our data robustly
confirm that the exponents saturate, it is hard to reach a
similar unambiguous conclusion from the previous results
in the literature [29–32,34,52,53].
The statistical convergence of the moments of order p up

to 20 was confirmed by the rapid decay of the moment
integrands, ðδrθÞpPðδrθÞ, where P denotes the probability
density function (PDF). The integrands of moment orders 6
and 16 are shown in Fig. 3, each for r in the low end of the
inertial range. The integrands peak before the tail contri-
butions decay, ensuring statistical convergence of the
moments. Saturation of exponents at higher orders implies
that, for scalar jumps jδrθj≳ θrms, PðδrθÞ ∝ rζ

θ
∞ [23,54].

Figure 4 verifies that this is indeed the case, with
PðδrθÞr−ζθ∞ collapsing for jδrθj ≥ 3θrms, for all inertial
separations. The inference is that the saturation of expo-
nents arises because of the dominance of the high-order
moments by features that do not change with scale,
suggesting that the gradients are of the order θrms=ηK.
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We now turn to quantifying the dimension of the spatial
support of the cliffs where strong scalar gradients tend to be
concentrated in sharp fronts (Fig. 1). The dimension of such
fronts is estimated by the spatial support of regions of the
strongest gradients of Oðθrms=ηKÞ with cubes of edge size
r, and counting their respective numberNðrÞ for different r.
As shown in the inset of Fig. 5, gradients greater than 20%
of θrms=ηK (marked by dotted lines) corresponding to
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hð∂θ=∂xÞ2ip

are used to determine NðrÞ. We chose
the threshold of 20% as a good representative of gradients
of the order θrms=ηK occurring with low probability (see
inset of Fig. 5). (The use of a somewhat different threshold
alters the scaling range in Fig. 5 but does not alter the
dimension itself.) The plot of NðrÞ versus r for such fronts
shown in the main body of Fig. 5 is compensated by r1.8

(see below for the rationale), and has three scaling regimes:
(i) at the smallest scales, a slope of −2, which corresponds
to flat fronts; (ii) at r=ηK ∈ ½4; 30�, for which the slope from
the least-squares fit is DF ¼ 1.79� 0.01, corresponding to
the spatial subset that supports the steep fronts in the scalar
field; (iii) at the largest scales, the slope is −3, which
corresponds to the Euclidean dimension of the flow. We
confirm, for the first time in 3D NS flows, that the

saturation exponent ζθ∞ and the box counting dimension
of the steep fronts DF are related to the space dimension,
d ¼ 3, as

ζθ∞ þDF ¼ d: ð1Þ

The confirmation of this relation in Navier-Stokes turbu-
lence is remarkable since it directly connects a property of
the highly intermittent statistics of the scalar to the spatial
geometry of mixing barriers in the flow. The geometrical
features of the scalar cliffs shown here have interesting
parallels beyond fluid turbulence; e.g., in fracture processes
in solids, where a network of steep cliffs with a fractal
dimensionDF ≈ 1.7 has been detected on a fracture surface
and related to the multifractal spectrum of height fluctua-
tions [12].

FIG. 3. Integrands of scalar increment moments [Pð·Þ denotes
PDF of ð·Þ] as functions of scalar increments, for orders 6 and 16
at r=ηK ¼ 55 (lower end of the inertial range), on lin-log scales;
moments of orders up to 20 converge as well and confirm the
saturation of exponents but are not shown here. The integrands
are normalized by respective moments such that the area under
each curve is unity.

FIG. 4. PDF of scalar increments across the inertial range,
multiplied by r−ζ

θ
∞, where ζθ∞ is the saturation exponent (Fig. 2).

The PDF tails collapse, confirming saturation of exponents.

(a)

(b)

FIG. 2. Scalar increment exponent ζθp versus moment order p.
(a) Present DNS: Peλ ¼ 650, dashed line at saturation exponent,
ζθ∞ ¼ 1.2. Error bars indicate 95% confidence interval. (b) Com-
parison of present DNS (shaded region) with previous results:
(▽) Peλ ¼ 220 [52], (◯) Peλ ¼ 280 [29], (△) Peλ ¼ 396 [32],
(◇) Peλ ¼ 580 [34]. Dash-dotted line shows normal scaling ζθp ¼
p=3 and dashed line is the model of Ref. [28]. A more extensive
data comparison can be found in [43].
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The anomaly in the passive scalar field advected by a 3D
NS flow at high Rλ is comparable for orders 4 and 6 to that
advected by the δ-correlated 3D Kraichnan model [55,56],
as seen in Fig. 6 where we quantify the degree of anomaly
of exponents against the roughness parameter of the flow
(which varies between 0 and 2 for the Kraichnan model and
is 4=3 for NS turbulence). This observed agreement is
plausible because, in a high-Rλ NS flow, the small scales
evolve with temporal rapidity, and the normalized expo-
nents, ψθ

p ≡ ðp=2Þζθ2 − ζθp, approach the Kraichnan limit of

a flow without memory. Scalar exponents for the Kraichnan
model saturate at different values for different roughness
parameters [23,54], and the observed correspondence with
the 3D NS results may not hold for high-order moments.
Our conclusive result here is that in a scalar field

advected by 3D NS turbulence, the exponents ζθp saturate
to ζθ∞ at large orders and that the saturation exponent is
connected to the fractal dimension of the steep fronts. We
do not expect ζθ∞ to be universal, since ζθp itself is
nonuniversal [34,57–59], but the fact that scalar exponents
saturate in 3D NS flows can have important consequences.
For instance, the minimum Hölder exponent of θ, hθmin ≔
limp→∞ζ

θ
p=p ¼ limp→∞ζ

θ
∞=p ¼ 0, implies that shocklike

quasidiscontinuities, or steep fronts, characterize the large
gradients of the scalar field, reminiscent of 1D Burgers
flow. However, while the Burgers flow displays a biscaling
behavior, the lower-order scalar exponents appear to have a
quadratic dependence on the order, similar to that derived
for scalar advection in the high-dimensional Kraichnan
model [22]. This work sets the stage for similar inves-
tigations in the low (Sc ≪ 1) and high (Sc ≫ 1) Schmidt
number regimes, which have important physical applica-
tions [60–63]. We conjecture that the strong diffusion in the
Sc ≪ 1 limit may prevent such a saturation, whereas in the
Sc ≫ 1 case, the weak diffusion may enhance a saturation
to the 1D Burgers limit. A careful analysis of the link
between geometry and statistics in these two regimes is
ongoing and will be reported as future work.
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