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The most general and versatile defining feature of quantum chaotic systems is that they possess an
energy spectrum with correlations universally described by random matrix theory (RMT). This feature can
be exhibited by systems with a well-defined classical limit as well as by systems with no classical
correspondence, such as locally interacting spins or fermions. Despite great phenomenological success, a
general mechanism explaining the emergence of RMT without reference to semiclassical concepts is still
missing. Here we provide the example of a quantum many-body system with no semiclassical limit (no
large parameter) where the emergence of RMT spectral correlations is proven exactly. Specifically, we
consider a periodically driven Ising model and write the Fourier transform of spectral density’s two-point
function, the spectral form factor, in terms of a partition function of a two-dimensional classical Ising model
featuring a space-time duality. We show that the self-dual cases provide a minimal model of many-body
quantum chaos, where the spectral form factor is demonstrated to match RMT for all values of the integer
time variable t in the thermodynamic limit. In particular, we rigorously prove RMT form factor for an odd t,
while we formulate a precise conjecture for an even t. The results imply ergodicity for any finite amount of
disorder in the longitudinal field, rigorously excluding the possibility of many-body localization. Our
method provides a novel route for obtaining exact nonperturbative results in nonintegrable systems.
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The problem of finding a quantum analog of the classical
concept of chaos has a long and fascinating history [1–3].
For systems with chaotic and ergodic classical limit, the
quantum chaos conjecture [4–6] states that the statistical
properties of energy spectrum are universal and given in
terms of random matrix theory (RMT) [7], where all matrix
elements of the Hamiltonian are considered to be indepen-
dent Gaussian random variables. An analogous result for
chaotic maps, or periodically driven (Floquet) systems,
relates the statistics of quasienergy levels to circular
ensembles of unitary random matrices [2,7]. This conjec-
ture has been by now put on firm theoretical footing by
clearly identifying contributions from periodic orbit theory
and RMT for the simplest nontrivial measure of spectral
correlations: the spectral form factor (SFF) [8–13]. This,
however, has been rigorously proven only for a specific
type of single-particle models: the incommensurate quan-
tum graphs [14,15].
The situation is even less clear for nonintegrable many-

body systems with simple, say clean and local, interactions,
where evidence of RMT spectral correlations is abundant
[16–19] but theoretical explanations are scarce. While for
many-body systems of bosons with a large number of
quanta per mode, or other models with small effective
Planck’s constant, a semiclassical reasoning may still be
used [20–23], the intuition is completely lost and no
methods have been known when it comes to fermionic
or spin-1=2 systems. Very recently, a few steps of progress

have been made. First, an analytic method analogous to the
periodic orbit theory for spin-1=2 systems has been
proposed in Ref. [24]. This method is able to establish
RMT spectral fluctuations for long-ranged but non-mean-
field nonintegrable spin chains; however, it fails in the
important extreme case of local interactions. Second, it has
been shown in Refs. [25,26] that Floquet local quantum
circuits with Haar-random unitary gates have exact RMT
SFF in the limit of large local Hilbert space dimension.
Remarkably, in both cases, the Thouless time, where
universal RMT behavior sets in, scales as the logarithm
of the system size [24,26], which is consistent with the
detailed numerical computations in Ref. [27].
In this Letter we make a crucial step forward by

providing the example of a locally interacting many-body
system with finite local Hilbert space for which the SFF
exactly approaches the RMT prediction in the thermody-
namic limit (TL) at all times. Thus, we identify the first
nonperturbative exactly solvable model displaying scale-
free many-body quantum chaos.
More specifically, we consider the Floquet Ising spin-

1=2 chain with transverse and longitudinal fields, described
by the following Hamiltonian [28,29]

HKI½h; t� ¼ HI½h� þ δpðtÞHK: ð1Þ

Here δpðtÞ ¼
P∞

m¼−∞ δðt −mÞ is the periodic delta func-
tion and we defined
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HI½h�≡
XL
j¼1

fJσzjσzjþ1 þ hjσ
z
jg; HK ≡ b

XL
j¼1

σxj ; ð2Þ

where we denote by L the volume of the system, σαj ,
α ∈ fx; y; zg, are the Pauli matrices at position j, and we
impose σαLþ1 ¼ σα1 . The parameters J, b are, respectively,
the coupling of the Ising chain and the transverse kick
strength, while h ¼ ðh1;…; hLÞ describes a position de-
pendent longitudinal field. Here and in the following,
vectors are indicated by bold latin letters. For generic
values of the longitudinal fields h the only symmetry
possessed by the Hamiltonian [Eq. (1)] is time reversal.
The Floquet operator generated by Eq. (1) reads as

UKI½h� ¼T exp

�
−i

Z
1

0

dsHKI½h;s�
�
¼ e−iHKe−iHI½h�: ð3Þ

In Floquet systems it is customary to introduce quasienergies
fφng defined as the phases of the eigenvalues of the Floquet
operator. The quasienergies take values in the interval ½0; 2π�
and their number is equal to the dimension of the Hilbert
space N ¼ 2L. The quasienergy distribution function can
then be written as ρðεÞ ¼ ð2π=N ÞPn δðε − φnÞ. It is
instructive to consider the connected two-point function of
ρðεÞ, defined as [30]

rðνÞ ¼ 1

2π

Z
2π

0

dερ

�
εþ ν

2

�
ρ

�
ε −

ν

2

�
− 1: ð4Þ

The Fourier transform of this quantity, known as the spectral
form factor, is the main object of our study

KðtÞ ¼ N 2

2π

Z
2π

0

dνeiνtrðνÞ ¼
X
m;n

eiðφm−φnÞt −N 2δt;0: ð5Þ

This object can be efficiently calculated in the context of
RMT. Since our system is time reversal invariant, the RMT
prediction relevant to our case is that of the circular
orthogonal ensemble, KCOEðtÞ ¼ 2t − t lnð1þ 2t=N Þ for
0 < t < N [7]. SFF represents an extremely efficient and
sensitive diagnostic tool for determining the spectral proper-
ties of a system. Any significant deviation from RMT is an
indicator of nonergodicity. For example, for integrable or
localized systems, spectral fluctuations are conjectured to be
Poissonian [31] and SFF is drastically different, KðtÞ ¼ N
for all t > 0.
Floquet SFF is defined for integer times t only (multiples

of driving period), and t > 0 admits a simple representation
in terms of the Floquet operator [Eq. (3)]

KðtÞ ¼ jtrðUt
KI½h�Þj2: ð6Þ

The trace of the Floquet operator can be thought of as the
partition function of a two dimensional classical Ising
model defined on a periodic rectangular lattice of size t × L

trðUt
KI½h�Þ ¼

X
fsτg

Yt
τ¼1

hsτþ1je−iHKe−iHI½h�jsτi

¼ ½ðsin 2bÞ=ð2iÞ�Lt=2
X
fsτ;jg

e−iE½fsτ;jg;h�: ð7Þ

Here the configurations are specified by fs1;…; stg≡
fsτ;jg, where sτ;j ∈ f�1≡ ↑↓g for all τ, j, and can be
regarded as classical spin variables, jsi is such that σzjjsi ¼
sjjsi and the energy of a configuration reads as

E½fsτ;jg; h� ¼
Xt

τ¼1

XL
j¼1

ðJsτ;jsτ;jþ1 þ J0sτ;jsτþ1;j þ hjsτ;jÞ

ð8Þ
where J0 ¼ −π=4 − ði=2Þ log tan b. Note that the
Boltzmann weights of this model are generically complex.
Observing that Eq. (8) couples only “spins” on neigh-

boring sites in both t and L directions, the partition function
[Eq. (7)] can be written both as the trace of a transfer matrix
propagating in the time direction and as the trace of a
transfer matrix propagating in the space direction. This
reveals the known duality transformation of the kicked
Ising model [32,33]. The transfer matrix in the time
direction is clearly given by UKI½h�, while the transfer
matrix “in space,” ŨKI½hj�, is given by the same algebraic
form [Eqs. (2) and (3)] exchanging J and J0 but acting on a
spin chain of t sites. Moreover, it acts at a nonstationary
homogeneous field hj ¼ hjϵ, where ϵ ¼ ð1;…; 1Þ is a
t-component constant vector. In other words, we have the
identity

trðUt
KI½h�Þ ¼ tr

�YL
j¼1

ŨKI½hjϵ�
�
: ð9Þ

Here UKI½h� acts on HL ¼ ðC2Þ⊗L and ŨKI½hjϵ� acts on
Ht ¼ ðC2Þ⊗t. Note that ŨKI½hjϵ� is generically nonunitary:
it becomes unitary only for jJj ¼ jbj ¼ ðπ=4Þ where
J0 ¼ �ðπ=4Þ. We call these points of parameter space
the “self dual points” and from now we focus on these.
The SFF is known to be non-self-averaging [34]. This

means that KðtÞ computed in a single system, i.e., for fixed
parameters J, b, h, does not generically reproduce the
ensemble average. In order to compare to RMT predictions
we then need to average over an ensemble of similar
systems. Here we consider a very natural form of averaging
by introducing disorder (which we may switch off at the
end of calculation): we assume that the longitudinal
magnetic fields at different spatial points hj are independ-
ently distributed Gaussian variables with the mean value h̄
and variance σ2 > 0, and we average over their distribution.
In other words, we consider

K̄ðtÞ≡ Eh½KðtÞ� ¼ Eh½trðUt
KI½h�ÞtrðUt

KI½h�Þ��; ð10Þ
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where the symbol Eh½·� denotes the average over the
longitudinal fields

Eh½fðhÞ� ¼
Z

∞

−∞
fðhÞ

YL
j¼1

e−ðhj−h̄Þ2=2σ2
dhjffiffiffiffiffiffi
2π

p
σ
: ð11Þ

The average in Eq. (10) mixes two copies of the classical
Ising model [Eq. (8)] with complex conjugate couplings.
After rewriting in terms of dual transfer matrices [Eq. (9)],
and noting that jtrUj2 ¼ trðU ⊗ U�Þ, we see that the
average factorizes row by row, and local averaging results
in translationally invariant coupling between two periodic
rows of t spins at the same spatial point. The resulting
averaged SFF can again be interpreted as the trace of an
appropriate transfer matrix in spatial direction (Fig. 1)

K̄ðtÞ ¼ trðTLÞ; ð12Þ

where the transfer matrix acts onHt ⊗ Ht and reads as [35]

T ≡ EhðŨKI½hϵ� ⊗ ŨKI½hϵ��Þ ¼ ðŨKI ⊗ Ũ�
KIÞOσ: ð13Þ

Here ŨKI ≡ ŨKI½h̄ϵ� and the local Gaussian average is
encoded in the following positive symmetric matrix

Oσ ¼ exp

�
−
1

2
σ2ðMz ⊗ 1 − 1 ⊗ MzÞ2

�
; ð14Þ

where Mα ≡P
t
τ¼1 σ

α
τ for α ∈ fx; y; zg. Note that, because

of Oσ , the matrix T is a nonunitary contraction.
The disorder averaged SFF K̄ðtÞ can be computed

numerically by evaluating Eq. (6) for several values of
the longitudinal fields and then taking the average
[Eq. (11)]. This can be done for small systems up to very
large times, see Fig. 2. Here, however, we follow a different

route. Numerical data provide strong evidence for the
validity of RMT for any fixed t, and any σ > 0, in the
TL L → ∞. Indeed, the RMT prediction applies also for
t ≪ N when the system behaves as if it were effectively of
infinite size. We then consider the TL and use Eq. (12) to
analytically compute K̄ðtÞ. This is done in two steps: (i) we
map the seeming formidable problem of computing K̄ðtÞ in
our nonintegrable many-body system into a simple problem
in operator algebra; (ii) we solve the latter.
A numerical investigation indicates that, as long as σ≠0,

the spectral gapΔ ¼ 1 −maxjλj<1λ∈eigenvaluesðTÞjλj remains finite

for all mean fields and times, see Fig. 3. Therefore, the TL
of the averaged SFF is entirely determined by the eigen-
values of T with largest magnitude. To find all such
eigenvalues it is useful to exploit the following property
[36], which is a consequence of the contractive nature ofOσ

and of the unitarity of ŨKI.
Property 1.—(i) the eigenvalues of T have at most unit

magnitude; (ii) even if T is generically not guaranteed to be
diagonalizable, the algebraic and geometric multiplicites of
any eigenvalue of magnitude 1 coincide.
Let us then construct all eigenvectors jAi of T of

unimodular eigenvalues. First, we note that all such jAi
lie in the eigenspace of Oσ with unit eigenvalue. This is
seen by expanding hAjT †T jAi ¼ 1 in an eigenbasis of Oσ

1 ¼ hAjT †T jAi ¼ hAjO2
σjAi ¼

X
n

jhAjnij2o2σ;n; ð15Þ

where 0 < oσ;n ≤ 1 are the eigenvalues of Oσ. Since jAi is
normalized and fjnig is complete, this is possible only if
hAjni ¼ 0 for all oσ;n < 1. In other words, jAi is a linear
combination of eigenvectors of Oσ with unit eigenvalue,
namely OσjAi ¼ jAi. Using the exponential form (14) of

FIG. 1. Pictorial representation of K̄ðtÞ. The average over hj
produces a transfer matrix T for all j ¼ 1;…; L. Each column and
row of the first lattice correspond respectively to the transfer
matrix UKI½h� and the dual transfer matrix ŨKI½hjϵ�. Each column
and row of the second lattice correspond, respectively, to the
complex conjugate transfer matrix UKI½h�� and the complex
conjugate dual transfer matrix ŨKI½hjϵ��.

FIG. 2. SFF in the disordered kicked Ising model for
J ¼ b ¼ ðπ=4Þ, L ¼ 15, and h̄ ¼ 0.6. The figure compares the
time evolution of the SFF for different widths σ of the disorder
distribution. Inset: short-time window. The large-time fluctua-
tions are due to the finite number (N ¼ 9490) of disorder
realizations.
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Oσ , we see that this condition means that all jAi are in the
kernel of Mz ⊗ 1 − 1 ⊗ Mz. Putting all together, we have
that the eigenvectors jAi associated to unimodular eigen-
values must satisfy

ðŨKI ⊗ Ũ�
KIÞjAi ¼ eiϕjAi; ϕ ∈ ½0; 2π�;
ðMz ⊗ 1 − 1 ⊗ MzÞjAi ¼ 0: ð16Þ

These conditions can be turned into equations for operators
overHt as follows. Denoting by fjnig a basis ofHt, we can
expand a generic vector in Ht ⊗ Ht as

jAi ¼
X
n;m

An;mjni ⊗ jmi�; ð17Þ

where the 22t complex numbers fAn;mg are interpreted as
the matrix elements of an operator A: hnjAjmi ¼ An;m. The
operator A is in one-to-one correspondence with the
state jAi and we can rewrite the conditions of Eq. (16)
as follows

½A;Mz� ¼ 0; ŨKIAŨ
†
KI ¼ eiϕA: ð18Þ

After some simple manipulations, [36] we find
Property 2.—The relations of Eq. (18) are equivalent to

UAU† ¼ eiϕA; ½A;Mα� ¼ 0; α ∈ fx; y; zg: ð19Þ

Here we defined the unitary operator U as

U ¼ exp

�
i
π

4

Xt

τ¼1

ðσzτσzτþ1 − 1Þ
�
: ð20Þ

The goal of step (i) is then achieved: the calculation of K̄ðtÞ
is reduced to finding all linearly independent matrices A
that fulfil Eq. (19) for some ϕ. Let us now consider the
latter algebraic problem.
The property U2 ¼ 1 implies ϕ ∈ f0; πg. Namely, the

unimodular eigenvalues of T are either 1 or −1. By exact
numerical diagonalization of T we find that the eigenvalues
−1 are much rarer than þ1 and are observed only for small
systems (see Table I). In particular, for an odd t we have the
following additional simplification [36]:
Property 3.—ϕ ¼ 0 for odd t.
For odd t we then need to determine all linearly

independent matrices A commuting with the set
M ¼ fU;Mx;My;Mzg. A subset of all possible operators
commuting with M is found by considering the common
symmetries: reflection R and one-site shift Π on a periodic
chain of t sites

Π ¼
Yt−1
τ¼1

Pτ;τþ1; R ¼
Ybt=2c
τ¼1

Pτ;tþ1−τ: ð21Þ

Here Pτ;ω ¼ 1
2
1þ 1

2

P
α σ

α
τ σ

α
ω is the elementary permutation

operator (transposition). These operators generate the so
called dihedral group (see, e.g., Ref. [37])

Gt ¼ fΠnRm; n ∈ f0;…; t − 1g; m ∈ f0; 1gg; ð22Þ

which is the symmetry group of a polygon with t vertices.
All elements of Gt commute with M and we have [36]
Property 4.—The number of linearly independent ele-

ments of Gt is 2t for t ≥ 6, 2t − 1 for t ∈ f1; 3; 4; 5g, and 2
for t ¼ 2.
We thus have a lower bound on the number of inde-

pendent matrices A fulfilling Eq. (19) and hence on the
value of the averaged SFF for odd t. Our main result is to
show that such lower bound is also an upper bound, namely
Theorem 1.—For odd t, any A simultaneously commut-

ing with all elements of fU;Mx;My;Mzg is of the form

A ¼
Xt−1
n¼0

X1
m¼0

an;mΠnRm; an;m ∈ C: ð23Þ

See Ref. [36] for a proof. As the number of such linearly
independent A is the multiplicity of eigenvalue 1 of T , and
since there is a finite gap between unit circle and the rest of
the spectrum, we have

FIG. 3. Spectral gap of T as a function of the disorder strength
σ. The left panel shows ΔðσÞ for h̄ ¼ 0 and different values of t:
we observe a clear even-odd effect in the data, but, in both cases,
the gap approaches a finite limiting curve for large t. The right
panel shows ΔðσÞ for t ¼ 13 and different values of h̄.

TABLE I. Number of eigenvalues 1 and −1 of the transfer
matrix T determined via exact diagonalization for t ≤ 17.

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

#þ1 2 5 7 9 13 14 18 18 22 22 25 26 29 30 33 34
#−1 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0
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lim
L→∞

K̄ðtÞ ¼
�
2t − 1; t ≤ 5

2t; t ≥ 7 ;
t odd: ð24Þ

For even t the situation is more complicated. In this case,
we identify an additional independent operator besides Gt
spanning the commutant of M. This operator can be
written as a projector jψihψ j, where we introduced a t
spin singlet state

jψi ¼ 1

2t

Yt=2
τ¼1

ð1 − Pτ;τþt=2Þj↓;…;↓|fflfflfflffl{zfflfflfflffl}
t=2

;↑;…;↑|fflfflfflffl{zfflfflfflffl}
t=2

i; ð25Þ

satisfying Ujψi ¼ −jψi, Mx;y;zjψi ¼ 0, Πjψi ¼ −jψi,
Rjψi ¼ ð−1Þt=2jψi. Moreover, for t ∈ f8; 10g we identify
the second additional operator commuting with the set M
[36]. Finally, for t ∈ f6; 10g we construct two operators
satisfying Eq. (19) with eigenphase ϕ ¼ π [36]. All these
additional operators, except Eq. (25), appear to be a short-
time fluke and are observed only for t smaller than 11. We
are then lead to conjecture

lim
L→∞

K̄ðtÞ ¼ 2tþ 1; t > 11; t even: ð26Þ

This conjecture, together with the exact result [Eq. (24)], is
in agreement with exact diagonalization of T on chains of
length t ≤ 17, see Tab. I.
The results of Eqs. (24) and (26) are remarkable: we fully

recovered two-point RMT spectral fluctuations (in the TL)
in a simple nonintegrable spin-1=2 chain with local
interactions. A key step of our calculation was to average
over the distribution of independent longitudinal fields h.
This average introduces a finite gap in the spectrum of the
transfer matrix T and selects the 2t “universal” eigenvalues
out of the exponentially many eigenvalues of T . Note that
any nonvanishing σ is sufficient for this astonishing
simplification to occur. Moreover, after the TL is taken,
there is no additional dependence of the result on the
disorder variance σ2, we can then consider the limit σ → 0
corresponding to a clean system. Finally, our result does not
depend on the particular distribution of the longitudinal
fields, as long as they are independent and identically
distributed random variables; a different choice modifies
the form of Eq. (14) but not the TL result. Since our
analysis is carried out in the TL, it is unable to access RMT
physics at timescales growing with L, such as level
repulsion emerging at t ∼ 2L.
Our proof of ergodicity pertains to some special, self-

dual, points in the parameter space of the system. At these
points the system is “maximally ergodic” as the Thouless
time does not grow with L. We have numerically verified
the stability of the ergodic behavior under perturbations
around the self-dual points. In this case, however, the

Thouless time becomes an increasing function of L, as
expected in generic chaotic systems.
A striking consequence of our result is a rigorous proof

of nonexistence of many-body localization [38–40] at any
self-dual point in our model (J; b ∈ f�ðπ=4Þg) for any
amount of uncorrelated disorder in the longitudinal field.
Indeed, knowing that KðtÞ ¼ 2t for an odd t ≥ 7 is enough
to exclude localization which should be connected to
Poissonian behavior.
The technique developed gives a new way of analytically

treating nonintegrable systems and suggests immediate
applications in several directions. First, one can apply it
to compute the bipartite entanglement entropy dynamics
starting from a random separable state, testing recent
conjectures [41–43] on its universal linear behavior in
ergodic systems. Moreover, our method can be used to
rigorously approach ETH by studying averages and higher
moments of distributions of expectation values of local
observables. Finally, one can use our technique to evaluate
dynamical correlation functions of local observables. A
preliminary analysis shows that, at the self-dual point in
the TL, they vanish for all t ≥ 1, consistently with an
L-independent Thouless time.
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