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We experimentally investigate the lattice-induced light shift by the electric-quadrupole (E2) and
magnetic-dipole (M1) polarizabilities and the hyperpolarizability in Sr optical lattice clocks. Precise
control of the axial as well as the radial motion of atoms in a one-dimensional lattice allows observing
the E2-M1 polarizability difference. Measured polarizabilities determine an operational lattice depth to
be 72ð2ÞER, where the total light shift cancels to the 10−19 level, over a lattice-intensity variation of
about 30%. This operational trap depth and its allowable intensity range conveniently coincide with
experimentally feasible operating conditions for Sr optical lattice clocks.
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Recent progress of optical clocks has pushed their
fractional uncertainty to the 10−18 level [1–4], which opens
up new applications of clocks, such as chronometric
geodesy [5,6], tests of fundamental constants [7,8], detec-
tion of dark matter [9], or gravitational waves [10].
Triggered by these advances, a future redefinition of the
second by optical clocks [11,12] is in range and its
procedure is being discussed [13].
A better understanding and control of perturbations lies

at the heart of the continued progress in atomic clocks.
Isolating atoms from electromagnetic (EM) perturbations is
of prime importance in designing ion clocks [14] where
ions are confined nearly free from EM perturbations.
Optical lattice clocks have shown that cancellation of trap
perturbation leads to stable and accurate clocks with
uncertainties less than 10−17 [2,3,12,15]; the magic fre-
quency aimed to equalize polarizabilities of the clock states
so as to decouple the clock transition frequency from
inhomogeneous trap perturbations [16]. Removal of per-
turbations by specifying the frequency is the essence of the
optical lattice clock, which is based on the fact that the
frequency is a precisely measurable quantity.
This magic frequency concept, however, becomes non-

trivial for achieving inaccuracy of 10−18 because of non-
negligible contribution of the higher-order light shifts than
that given by the electric-dipole (E1) interaction. In a
standing wave of light, a quarter-wavelength spatial mis-
match between the E1 potential and the potential induced
by the electric-quadrupole (E2) and magnetic-dipole (M1)
interactions introduces an atomic-motion-dependent light
shift [17,18]. In addition, the hyperpolarizability effect
introduces a light shift proportional to the square of lattice
intensity [16,19]. Different spatial dependence makes these
light shifts difficult to eliminate. An operational magic

frequency [20] is proposed to compensate the higher order
shifts by the E1 light shift and make the overall light
shift insensitive to lattice-intensity variation around a
“magic intensity.”
In order to find such an operational condition, precise

knowledge of the higher-order polarizabilities is manda-
tory. Higher-order light shifts have been investigated
theoretically [21,22] and experimentally for Sr [3,11,23],
Yb [15,24,25], and Hg [26]. Recently, the hyperpolariz-
ability was measured for Yb to find the operational magic
frequency [15] with the help of a theoretical calculation of
the E2-M1 polarizability. As for Sr, in spite of significant
efforts, discrepancies between reported polarizabilities are
not yet solved.
In this Letter, we investigate the hyperpolarizability

and the E2-M1 polarizability for Sr atoms in a one-
dimensional (1D) lattice. From the nonlinear intensity
dependence of the light shift, we derive the hyperpolariz-
ability. The E2-M1 polarizability is evaluated by meas-
uring the light shift difference by changing the vibrational
state of atoms in the lattice. Using the obtained polar-
izabilities, we derive two distinctive operational condi-
tions that make the total light shift insensitive to lattice
intensity variation at the 10−19 level.
The lattice-induced light shift νLS is given by the light

shift difference between the ground and excited states on
the clock transition. For a 1D optical lattice as shown in
Fig. 1(a), the light shift depends on the vibrational state nz
of atoms along the z axis, the lattice laser intensity, and
the detuning δL of lattice laser νL ¼ δL þ νE1 from the E1
magic frequency νE1 that makes the E1 polarizabilities αE1

for the clock states equal. Since the peak intensity I0 of the
lattice is proportional to the trap depth U ≈ αE1I0 (by
neglecting the higher-order effects of less than 10−6), we
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rewrite the light shift formula [20] in terms of a normalized
trap depth u¼U=ER with ER¼ðhνL=cÞ2=ð2mÞ the lattice
photon recoil energy as,

hνLSðu; δL; nzÞ ≈
�∂α̃E1

∂ν δL − α̃qm
��

nz þ
1

2

�
u1=2

−
�∂α̃E1
∂ν δL þ 3

2
β̃

�
n2z þ nz þ

1

2

��
u

þ 2β̃

�
nz þ

1

2

�
u3=2 − β̃u2; ð1Þ

where α̃E1, α̃qm, and β̃ are the difference (denoted by tildes)
of E1 and E2-M1 polarizabilities, and hyperpolarizability
on the clock transition. The conversion of these polar-
izabilities is summarized in the Supplemental Material [27].
While the light shift model given in Ref. [20] takes into
account the anharmonicity of the lattice trap toOðz4Þ in the
axial coordinate expansion, we verify that neglectingOðz6Þ
terms is valid for describing the light shift with low 10−19

uncertainty for Sr [27].
The lattice intensity is nonuniform in nature, as the

spatial inhomogeneity itself is the essence of an optical
trap. As the intensity critically affects the light shift as
given in Eq. (1), precise control and evaluation of atomic
distribution in the optical lattice is of particular importance.
We consider atomic motion in the 1D lattice potential given
by Uðx; y; zÞ ≈ −αE1I0e−2ðx

2þy2Þ=w2

cos2ð2πz=λLÞ, where I0,
w, and λL ¼ c=νL are the peak intensity, the radius, and
the wavelength of the lattice laser with a Gaussian profile.
The axial and radial oscillation frequencies of atoms are
given by νz ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αE1I0ER

p
=h and νr ¼ νzλL=ð

ffiffiffi
2

p
πwÞ)

(≈νz=320 for our experiment). In contrast to the axial
vibrational states with averaged occupation n̄z ≈ 0 that
require quantum treatment, the radial motion can be treated
classically as the vibrational states typically occupy n̄r ¼
kBTr=ðhνrÞ ≈ 110 with Tr the radial temperature and kB
the Boltzmann constant. Assuming a thermal distribu-
tion ρðx;yÞ¼ ½mð2πνrÞ2=2πkBTr�e−1

2
mð2πνrÞ2ðx2þy2Þ=ðkBTrÞ of

atoms, the effective laser intensity experienced by the
atoms is given by

uj ¼
Z

ρðx; yÞ
�
αE1I0e−2ðx

2þy2Þ=w2

ER

�j

dxdy≡ ζjuj; ð2Þ

where we denote the thermal average by the bar
and define a lattice-intensity reduction factor ζjðuÞ≈
1 − ðjkBTr=uERÞ. In the following, we evaluate the
lattice light shifts of Eq. (1) by the effective intensity
uj ¼ ζjðuÞuj.
To investigate the hyperpolarizability effect, we install a

buildup cavity with a power enhancement factor of ≈20
for the 1D optical lattice oriented vertically as shown in
Fig. 1(a). The beam radius is chosen as w ≈ 60 μm to

moderate atomic collisions and allows a maximum trap
depth of u ∼ 1200. This cavity also works as a spatial filter
to define a TEM00 Gaussian mode. We use a Ti:sapphire
laser at νL ≈ 368 THz stabilized to a reference cavity that is
calibrated by a frequency comb linked to the Sr clock. By
applying a volume Bragg grating with a bandwidth of
∼20 GHz, we suppress amplified spontaneous emission of
the lattice laser and reduce the relevant light shift [11] to
less than 10−19.

87Sr atoms are laser cooled to ∼5 μK and loaded into the
lattice with its depth of uref ¼ 272 (urefER=kB ¼ 45 μK).
This loading condition is kept constant during measure-
ments. A bias magnetic field of jBbiasj ¼ 65 μT is applied
along the x axis to define the quantization axis and to
separate the Zeeman substates. Lattice, optical pumping,
and clock laser are all polarized parallel to the bias
field, while that of the cooling laser is perpendicular to
the bias field so as to be decomposed into σ� components.

(a) (b)

(c)

FIG. 1. (a) Experimental setup for the cavity-enhanced 1D
lattice. After loading atoms from the magneto-optical trapping
(MOT) into the lattice, we apply sideband cooling (SBC) and
Doppler cooling (DPC) on the 1S0 − 3P1 transition. (b) Energy
diagram for 87Sr atoms. (c) Reduction factors ζj calculated from
the radial temperature Tr are shown by symbols, where colors
indicate j as given in the legend. The dashed lines show estimated
reduction factors ζadj ðuÞ assuming the lattice depth is adiabati-
cally varied from uref ¼ 272 (see text). The blue and red lines in
the inset show motional sideband spectrum on the clock transition
at uref with and without SBC/DPC.
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Applying the π-polarized pumping laser resonant with the
1S0ðF ¼ 9=2Þ − 3P1ðF ¼ 7=2Þ transition [see Fig. 1(b)],
the atoms are optically pumped to the outermost Zeeman
substates 1S0ðF ¼ 9=2; mF ¼ �9=2Þ used for the clock
interrogation. In the following, we discuss the case where
we take the mF ¼ 9=2 state as the clock state.
Simultaneously with the optical pumping, we apply

Doppler cooling for the radial motion with the σþ compo-
nent of the cooling laser on the 1S0ðF ¼ 9=2; mF ¼ 9=2Þ −
3P1ðF ¼ 11=2; mF ¼ 11=2Þ transition. Consequently, the
radial temperature is reduced to Tr ≈ 2 μK (correspond-
ingly ζ1ðurefÞ ≈ 0.96), as measured by time-of-flight (TOF)
thermometry, and the linewidth of the blue sideband on the
clock transition is reduced to ∼8 kHz as shown in the inset
of Fig. 1(c). The atoms remaining in the mF ¼ −9=2 state
are heated out of the lattice by the σ− component of the
cooling laser. Subsequently, we apply sideband cooling to
reduce axial vibrational states to n̄z < 0.01, as measured by
the ratio of red and blue sidebands, using the σþ-polarized
cooling laser propagating along the lattice axis.
In order to purify themF state, we excite the atoms to the

3P0ðmF ¼ 9=2Þ state with a 22-ms-long clock π pulse so as
to resolve the Zeeman substates and to select a single mF
state. Atoms in the other Zeeman substates remain unex-
cited and are subsequently blown away by a laser pulse
tuned to the 1S0 − 1P1 transition. For the preparation of
atoms in the 3P0ðmF ¼ −9=2Þ state, we apply the similar
procedure with the σ− component of the cooling laser.
Finally, in order to evaluate the lattice light shift

dependence on the trap depth, we adiabatically ramp up
or down the lattice depth from uref to u over 80 ms.
Symbols in Fig. 1(c) show reduction factors determined
by the TOF measurements, which reasonably follow
those assuming adiabatic temperature changes, i.e.,
ζadj ðuÞ ¼ 1 − ½1 − ζjðurefÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
u=uref

p � as shown by dashed
lines with corresponding colors. As the reduction factor
after the adiabatic ramp is in the range of 0.95 < ζ1ðuÞ <
0.99 for 150<u<1150, we approximate uj≈ðζ1uÞj, which
is valid within 0.2% error. The axial vibrational number
n̄z < 0.01 is measured unchanged after the adiabatic ramp.
We operate two Sr clocks, Sr1 and Sr2, to evaluate the

light shift: Sr1 measures the light shift by varying the lattice
depth u or vibrational state nz of atoms, while Sr2 serves as
a frequency anchor. Sr1 and Sr2 simultaneously interrogate
the clock transition at ν0 ≈ 429 THz with a common laser
to cancel out the Dick effect noise introduced by the clock
laser, which improves the Allan deviation for the light shift
measurements [31].
Figure 2 shows the intensity-dependent light shift

ΔνūLS¼ νLSðū;δL;0Þ−νLSðūref ;δL;0Þ as a function of the
effective depth ū ¼ ζ1ðuÞu by taking ūref ¼ ζ1ðurefÞuref ¼
263 as a reference. We change the lattice laser frequency νL
every 30 MHz, which is measured with uncertainties less
than 100 kHz. The detunings δL given in the legend are

calculated after determining the E1 magic frequency νE1 as
described below. The hyperpolarizability effect introduces
the nonlinear dependence for higher intensity, where
we correct the density shift of low 10−18 by measuring
the density-dependent shift [27].
All the data in Fig. 2 are fitted using the light shift model

given in Eq. (1), where we take νE1, ∂α̃E1=∂ν, and β̃ as free
parameters. As α̃qm scarcely contributes to this fitting, we
conduct anothermeasurement to determine α̃qm and apply the
results to this fitting. We repeat these two fittings until the
fitting parameters converge. Finally, the solid fitting curves
determine νE1¼368554465.1ð1.0ÞMHz, ð∂α̃E1=∂νÞ=h ¼
1.735ð13Þ × 10−11, and β̃=h ¼ −0.461ð14Þ μHz.
As the light shift arising from the multipolar polar-

izability α̃qm is sensitive to the vibrational states nz [18],
we measure the differential light shift between nz ¼ 1 and
nz ¼ 0 vibrational states given by

hΔνvibLS ðu; δLÞ ¼ h½νLSðu; δL; 1Þ − νLSðu; δL; 0Þ�

¼
�∂α̃E1

∂ν δL − α̃qm
�
u1=2 þ β̃uð2u1=2 − 3Þ:

ð3Þ

This eliminates the otherwise dominating contributions
from α̃E1 and β̃, and allows extracting α̃qm.
For this measurement, we excite the atoms to the nz ¼ 0

or 1 vibrational state in the 3P0ðmF ¼ 9=2Þ state by
applying a rapid adiabatic passage (RAP) [32] by frequency
sweeping the π-polarized clock laser across the carrier and
blue sideband in 6 ms. The Rabi frequency of the clock
laser is about 50 kHz (10 kHz) for the carrier (the blue
sideband). This RAP allows transferring more than 90%
of the atoms to the desired vibrational states. The atoms

FIG. 2. Intensity-dependent light shift ΔνūLS measured by
referencing ūref ¼ 263. The light shifts are measured at the
lattice detunings δL as shown in the legend. Error bars give
1σ statistical uncertainties for each measurement. The solid
curves fit the measurements according to Eq. (1).
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remaining in the ground state are heated out of the trap by
driving the 1S0 − 1P1 transition.
Figure 3 shows the differential light shift ΔνvibLS ðū; δLÞ

measured for the lattice detuning δL ¼ 0.4 MHz. A
green line fits the measurements by taking α̃qm as a free
parameter, while β̃, νE1, and ∂α̃E1=∂ν are fixed with the
values obtained with the data in Fig. 2. The updated
result of α̃qm is recursively used for deriving the hyper-
polarizability. We determine the differential multipolar
polarizability to be α̃qm=h ¼ −0.962ð40Þ mHz. The black
dashed line shows ΔνvibLS ðū; 0Þ at the E1 magic frequency
νE1. By setting β̃ ¼ 0 and α̃qm ¼ 0, we obtain red and blue
lines, which indicate that ΔνvibLS ðū; 0Þ is mainly determined
by the multipolar polarizability for ū < 200 and the hyper-
polarizability starts to contribute for higher intensity.
Note that the two lines divide the plot into 3 sections
indicated by different colors depending on the signs of
these polarizabilities.
The lattice-induced light shifts νLSðū; δL; 0Þ predicted

by the obtained polarizabilities are shown in Fig. 4. In
addition to making the light shift insensitive to the trap
depth ū, i.e., ð∂νLS=∂uÞju¼ūop ¼ 0, the Sr clock transition
offers two distinctive operational conditions ðūop; δopL Þ, as it
has the same sign for β̃ and α̃qm [27] as indicated by the
green area in Fig. 3: (i) by taking δopL ¼ 5.3ð2Þ MHz and
ūop ¼ 72ð2Þ, the total light shift can be reduced to less than
1 × 10−19 over the trap depth 60 < u < 83 as indicated by
a red line. Alternatively, (ii) by taking δopL ¼ 4.1ð1Þ MHz
and ūop ¼ 28ð1Þ, an inflection point determined by
ð∂2νLS=∂u2Þju¼ūop ¼ 0 offers the light shift variation less
than 1 × 10−19 over the trap depth 17 < u < 43 as shown

by a blue line. Orange and sky-blue shaded areas indicate
the uncertainties of 4 × 10−19 and 2 × 10−19 given by those
of measured polarizabilities. The E1 magic frequency
uncertainty of 1.0 MHz for the present measurements,
including the tensor-shift contribution as discussed in
the Supplemental Material [27], gives an overall light-
shift uncertainty 3 × 10−18 at ūop ¼ 72 (hatched area) and
1 × 10−18 at ūop ¼ 28, which can be reduced by improving
the statistics of the clock measurements. For the lattice
depth of 72ER and 28ER, the off-resonant lattice-photon
scattering rate [33], including Raman scattering in the 3P0

state and Rayleigh scattering, is estimated to be 0.1 and
0.04 s−1, allowing a sufficient clock interrogation time over
multiple seconds.
Figure 5 summarizes reported polarizabilities for the

1S0 − 3P0 clock transition of Sr. The hyperpolarizability β̃
determined in this work agrees with the previous results
[3,23] within their uncertainties and is close to a recent
theory [22]. Our multipolar polarizability α̃qm deviates

FIG. 3. Evaluation of the multipolar polarizability from the
light shift difference between nz ¼ 1 and nz ¼ 0 measured at
δL ¼ 0.4 MHz shown by empty circles. Assuming β derived
from Fig. 2, regions with α̃qm < 0ð>0Þ are displayed by upper
red-green (lower blue) area. Empty circles fall on the upper
region, indicating α̃qm < 0. By taking α̃qm in Eq. (3) as a free
parameter, the fitting determines α̃qm=h ¼ −0.962ð40Þ mHz as
shown by a green line.

FIG. 4. Lattice light shift near the operational magic conditions
for different detunings δL. The red and blue curves show the light
shifts for two operational magic frequencies (i) δL ¼ 5.3ð2Þ MHz
to make the light shift zero at ūop ¼ 72ð2Þ (red vertical line), and
(ii) δL ¼ 4.1ð1Þ MHz to use an inflection point at ūop ¼ 28ð1Þ
(blue vertical line). Orange (sky-blue) shaded area indicates an
uncertainty given by the measured polarizabilities and a hatched
area indicates that given by the E1 magic frequency for case (i).

FIG. 5. Summary of differential hyperpolarizability β̃ and
multipolar polarizability α̃qm on the clock transition reported
in previous works SYRTE [11,23], JILA [3], theory 1 (error bars
not available) [21], theory 2 [22], and this work.
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from the previous experiment [23] that indicates zero
within the uncertainty, and from two theories [21,22] that
give opposite signs with each other.
In summary, we have determined the differential multi-

polar ðα̃qmÞ and hyper ðβ̃Þ polarizabilities for Sr optical
lattice clocks by precisely controlling the atomic motion.
These polarizabilities predict two distinctive operational
conditions: the lattice depth and frequency δopL of
ð72ER; 5.3 MHzÞ allows canceling out the lattice light
shift and ð28ER; 4.1 MHzÞ allows using the inflection
point, both of which coincide with typical operating
conditions for Sr clocks [2,33]. These operational lattice
depths are conveniently described by magic sideband
frequencies of νopz ¼59ð1Þ= ffiffiffiffiffi

ζ1
p

kHz and 29ð1Þ= ffiffiffiffiffi
ζ1

p
kHz

for the axial motion, respectively, with ζ1 the intensity
reduction factor to be measured. A narrow-line cooling [34]
allows ζ1 ≈ 0.91 or better, which well meets the predicted
lattice intensity tolerance of more than 30% around the
magic intensity. Combined with cryogenic clocks that
reduce the blackbody radiation shift [2], the clock uncer-
tainty at the level of 10−19 falls within the scope.
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