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We consider two-dimensional weakly bound heterospecies molecules formed in a Fermi-Bose mixture
with attractive Fermi-Bose and repulsive Bose-Bose interactions. Bosonic exchanges lead to an
intermolecular attraction, which can be controlled and tuned to a p-wave resonance. Such attractive
fermionic molecules can be realized in quasi-two-dimensional ultracold isotopic mixtures. We show that
they are stable with respect to the recombination to deeply bound molecular states and with respect to the
formation of higher-order clusters (trimers, tetramers, etc.)
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One of the most paradigmatic examples of a topological
quantum system is the px þ ipy superfluid, realized in
3He [1] and possibly in superconducting Sr2RuO4 [2].
In spite of these observations, there is a constant search for
more robust and controllable setups with a better access
to the interesting topological properties of this nontrivial
phase [3,4], Majorana modes, non-Abelian vortices, and,
eventually, to the topologically protected quantum comput-
ing [5]. Ultracold gases make a promising platform for
this search because of their purity, controllability, and
successful past performance, particularly resulted in the
comprehensive characterization of the crossover from
the s-wave Bardeen-Cooper-Schrieffer (BCS) pairing to
the Bose-Einstein condensation of molecules in two-
component Fermi gases [6–10].
The analogous crossover for spinless fermions with

p-wave attraction is expected to be fundamentally different
and more challenging for both theory and experiment. By
using a variational BCS-type ansatz it has been shown that
with increasing the attraction the system should cross a
transition from the weakly coupled topological px þ ipy

phase to the topologically trivial strongly coupled phase of
dimers (see [11] for review). However, inclusion of three-
body and possibly higher-order correlations may signifi-
cantly modify this picture [12–17]. From the experimental
side, in spite of the availability of p-wave Feshbach
resonances for fermionic alkalis [18–28], these systems
suffer from enhanced three-body losses; the two-body wave
function near a p-wave resonance is localized at short
interparticle distances where the pair is “preformed” and
can easily recombine to deeper molecular states when the
third particle comes nearby [12,13,29]. Reaching thep-wave
superfluidity while keeping inelastic losses under control is
one of the most challenging problems in the field [30–37].
The inelastic decay can be suppressed, if the support of

the p-wave attraction extends much beyond the recombi-
nation region. A remarkable experimental demonstration of

this phenomenon, although not for identical fermions, is the
strong and recombination-free p-wave attraction between
40K atoms and weakly bound 40K-6Li molecules, driven by
the Li atom exchange [38]. Here, the range of the atom-
molecule potential, comparable to the size of the molecule,
is much larger than the interatomic van der Waals range,
which determines the recombination region. The idea of
separating the two scales is also compatible with numerous
theoretical proposals of achieving the p-wave pairing by
immersing identical fermionic impurities into a Bose or
Fermi gas of another species, the attraction between the
impurities being generated by exchanges of phonons or
particle-hole excitations in the host gas [39–58].
In this Letter, we consider weakly bound two-dimensional

Fermi-Bose molecules and investigate their scattering prop-
erties. We show that these composite fermions experience a
p-wave attraction, which strengthens with the Fermi-Bose
mass ratio mF=mB and weakens with the ratio of the Bose-
Bose (BB) to Fermi-Bose (FB) two-dimensional scattering
length aBB=aFB [59]. A finite BB repulsion is necessary to
avoid the formation of Fermi-Bose-Bose (FBB) and higher-
order clusters in collisions of two or larger number of
molecules. We find that under current experimental con-
ditions the attraction between molecules can be made
sufficiently strong and their lifetime sufficiently long for
observing the p-wave pairing, particularly in the quasi-two-
dimensional isotopic 40K-39K mixture.
The mechanism of the molecule-molecule attraction can

be qualitatively understood as follows. Consider two iden-
tical fermionic atoms interacting with a boson via a short-
range potential that supports a weakly bound FB molecular
state. The exchange of the boson leads to an effective
attraction, inversely proportional to the bosonmassmB [60–
62]. On the other hand, the fermionic quantum statistics
imposes an effective centrifugal repulsion∝ lðlþ 1Þ=mFR2

in three dimensions and ∝ l2=mFR2 in two dimensions,
where l is an odd integer and R is the distance between the
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fermionic atoms. Above a critical mass ratio ðmF=mBÞc,
which marks an atom-molecule resonance, the exchange
attraction overcomes the centrifugal barrier and there appears
a trimer statewith angular momentum l. In three dimensions,
the l ¼ 1 trimer appears above ðmF=mBÞc ¼ 8.2 [63] and in
two dimensions this number decreases to ðmF=mBÞc ¼ 3.3
[64], consistent with the factor of 2 reduction of the
centrifugal barrier. Below ðmF=mBÞc the system is charac-
terized by an atom-molecule attraction in the p-wave
channel, like the one observed in the three-dimensional
mixture of 40K atoms and 40K-6Li molecules [38,65].
Now consider two FB molecules (FFBB system), for the

moment neglecting the BB interaction. Then, the presence
of the second boson approximately doubles the exchange
attraction and we expect a p-wave molecule-molecule
resonance to appear at a roughly twice lower mass ratio
than in the FFB case. There are problems with this picture,
particularly in the three-dimensional case where the FBB
subsystem is Efimovian [66–68] and, therefore, features a
ladder of FBB trimer states and an enhanced local three-
body FBB correlator. Both these factors make molecules
prone to inelastic losses. Although there may be a way to
minimize losses [69], we turn our attention to the (non-
Efimovian) two-dimensional case. In this case, the above
estimates suggest that the molecule-molecule p-wave
interaction becomes resonant for 1≲mF=mB ≲ 2, offering
a possibility to study effects of strong p-wave interactions
in accessible isotopic mixtures.
In the rest of the Letter, we focus on the casesmF=mB ¼ 1

and mF=mB ¼ 2. We first investigate the energetic stability
of two- and three-molecule collisions with respect to the
formation of clusters of the type FNBM and determine the
molecule-molecule scattering properties in the purely two-
dimensional case. Then, we apply our results to a realistic
quasi-two-dimensional setup and discuss relaxation losses.
We model the two-dimensional FB and BB interac-

tions by, respectively, attractive and repulsive Gaussian

potentials ∝ expð−r2=2r20Þ. The FB potential is so shallow
that the FB scattering length aFB is much larger than the
range r0 and there is a weakly bound molecular state with
the energy close to the universal zero-range value EFB ¼
−2e−2γ=μa2FB, where γ ¼ 0.5772 is Euler’s constant, μ ¼
mFmB=ðmF þmBÞ, and we set ℏ ¼ 1. The repulsive BB
potential supports no bound states. It is quantified by
0 < aBB ≲ r0.
A low-energy collision between two FB molecules can

result in the creation of FFB or FBB trimers. Their energies
in two dimensions have been calculated for any mass ratio
in the absence of the BB interaction [64] (see also [70,71]).
The FFB trimer does not exist for mF=mB < 3.3 [64]. By
contrast, the FBB trimer exists and its energy is always
below the molecule-molecule collision threshold 2EFB.
However, we show (see Fig. 1) that already a weak BB
repulsion (aBB=aFB > 7.65 × 10−9 for mF=mB ¼ 1 and
aBB=aFB > 3.2 × 10−22 for mF=mB ¼ 2) is sufficient to
push the FBB trimer up and thus energetically forbid its
formation in low-energy molecule-molecule collisions.
Three-molecule collisions can, in principle, result in the

formation of the fermion-rich FFFB and FFFBB and
boson-rich FBBB and FFBBB clusters. The FFFB tetramer
is not bound [72] and we find no FFFBB pentamer for the
considered mass ratios. By contrast, the boson-rich clusters
exist and we show their ground-state energies in Fig. 1
(FBM and F2BM clusters have, respectively, zero and unit
angular momenta). We observe that, as long as the trimer-
formation channel FBþ FB → FBBþ F is energetically
closed, the reaction FBþ FBþ FB → FBBBþ Fþ F is
also energetically forbidden. However, the reaction FBþ
FBþ FB → FFBBBþ F requires a stronger BB repulsion
to become energetically forbidden. The corresponding
critical ratios aBB=aFB for mF=mB ¼ 1 and mF=mB ¼ 2

equal 8 × 10−6 and 1.4 × 10−5, respectively. Thus, in this
two-dimensional model, for a sufficiently strong BB
repulsion, two- and three-molecule collisions are elastic.

(a) (b)

FIG. 1. Energies of various Fermi-Bose clusters in units of the molecule energy EFB formF=mB ¼ 1 (a) andmF=mB ¼ 2 (b). The solid
curves are linear interpolations of the data. The orange and pink horizontal lines indicate the two- and three-molecule scattering
thresholds, respectively. The FFBB tetramer exists in the case mF=mB ¼ 2. Its crossing with the two-molecule threshold marks the
molecule-molecule p-wave resonance.
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We attribute the relatively small critical values of the BB
interaction to the approximate balance between centrifugal
and boson-exchange forces for the considered mass ratios.
The analysis of inelastic channels in N-molecule collisions
with N > 3 requires heavy calculations of higher-order
clusters. We leave this task for future work.
The bound-state energies presented in Fig. 1 are calcu-

lated by the stochastic variational method (SVM) [73],
where we set r0 ¼ 0.003=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mFjEFBj
p

. In order to check
universality of the results, we have performed additional
runs with r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mFjEFBj
p ¼ 0.006 and 0.012; the relative

error for the cluster energies presented in Fig. 1 is at most
1%. Our result for EFBB agrees with Ren and Aleiner [74]
who have calculated and established universality of this
quantity in the mass-balanced case, although in a narrower
window of aBB=aFB.
Our calculations of the FFBB system are consistent with

the qualitative guess that the p-wave molecule-molecule
resonance should appear for mF=mB ∼ 1. Indeed, for
mF=mB ¼ 2 we find one tetramer state, which crosses
the molecule-molecule threshold (corresponding to the
molecule-molecule p-wave resonance) at aBB=aFB ¼ 1.2 ×
10−5 [see Fig. 1(b)]. Although no FFBB tetramer state is
found in the mass-balanced case, we anticipate a significant
p-wave molecule-molecule attraction there, which is inter-
esting for the realization of the topologically nontrivial
(weakly coupled) px þ ipy phase. We will now discuss
scattering properties of the molecules.
The physical range of the molecule-molecule interaction

is aFB and, for small relative momenta k ≪ 1=aFB, the
scattering is characterized by the p-wave scattering surface
S and effective range ξ defined through the effective range
expansion of the scattering phase shift [75]

−πcotδðkÞ ¼ 4

k2S
− lnðk2ξ2Þ þOðk2a2FBÞ: ð1Þ

In order to find these parameters, we calculate the energy of
the FFBB system in an isotropic harmonic potential of
frequency ω and use the relation between the phase shift δ
and the spectrum for two trapped particles (in our case, FB
molecules) derived by Kanjilal and Blume [76],

−πcotδðkÞ ¼ 1

k2l20
− ln

k2l20
2

þ ψ

�

1 −
k2l20
2

�

þOðk2a2FBÞ;

ð2Þ
where l0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmF þmBÞω
p

is the oscillator length and ψ
is the digamma function. Eliminating δ from Eqs. (1) and (2)
and introducing Fðx; yÞ ¼ xψð1 − x=2yÞ þ yþ x lnð2yÞ,
we arrive at the equation

Fðk2a2FB;a2FB=l20Þ¼
4a2FB
S

−k2a2FB ln
ξ2

a2FB
þOðk4a4FBÞ: ð3Þ

We emphasize that Eq. (3) does not solve the four-body
problem. It just relates the unknown scattering parameters S
and ξ to the radial spectrum in a sufficiently shallow trap,
which we calculate by the four-body SVM.
More specifically, we calculate the ground-state energy

EFB and the four-body spectrumEFFBB as a function of l0 for
fixedmF=mB, aFB, and aBB. The squared scattering momen-
tum k2 ¼ ðmF þmBÞðEFFBB − 2EFBÞ is plugged into
Fðk2a2FB; a2FB=l20Þ, which is then plotted versus k2a2FB in
Fig. 2. The full and hollow symbols correspond, respectively,
to the ground and first radially excited state of the relative
molecule-molecule motion. The ground-state data are very
well fit by linear functions (solid lines), from which we
extract S and ξ. For all data sets, 0.5 < ξ=aFB < 1. By
contrast, S can become large signaling a strong p-wave
interaction, attractive for S < 0. We see that the excited-state
data (hollow symbols) are also consistent with the linear fits,
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FIG. 2. Fðk2a2FB; a2FB=l20Þ vs k2a2FB calculated for aBB=aFB ¼ 10−8 (red), 10−7 (green), 10−6 (blue), 10−5 (purple), 10−4 (orange), and
10−3 (pink) for mF=mB ¼ 1 (left) and mF=mB ¼ 2 (right). The full and hollow symbols correspond, respectively, to the ground and first
radially excited four-body states in a trap with various l0 (the leftmost data points stand for the largest l0). Straight lines are linear fits to
the ground-state data. Their left ends correspond to the free-space tetramer energies (l0 ¼ ∞) shown in Fig. 1.
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although for mF ¼ mB and small aBB=aFB, we observe a
deviation, which we attribute to the proximity of the FB-FB
and F-FBB scattering thresholds (cf. Fig. 1).
Figure 3 shows a2FB=S as a function of aBB=aFB for the

two mass ratios. The result is obtained for two molecules
and, in order to avoid cluster formation in three-molecule
collisions, we need aBB=aFB to be larger than ≈10−5 for
both mass ratios (see Fig. 1). Nevertheless, even with this
constraint we can access the resonance formF=mB ¼ 2 (the
resonance position is consistent with the tetramer threshold
discussed earlier) and reach S ≈ −3a2FB in the mass-
balanced case, which is practically large given that aFB is
a controllable quantity much larger than the atomic inter-
action range. To give an idea for the value of the p-wave
superfluid gap in a gas of such molecules, we cite the zero-
temperature BCS result Δ ≈ kF=½ξðmF þmBÞ� expð2=k2FSÞ
[75], where kF is the Fermimomentum. There are, of course,
other observables influenced by such a strong p-wave
attraction: thermalization rate, mean-field interaction shift,
virial coefficients, collective-mode frequencies, etc. Some
of themare universally related through twop-wave contacts,
corresponding to S and ξ [77,78].
Favorable conditions for our proposal are provided

by the isotopic 40K-39K mixture. Confining it in one
direction to zero-point motion results in a kinematically
two-dimensional system characterized by the effective two-
dimensional scattering lengths aFB and aBB, related to the

three-dimensional ones að3DÞFB and að3DÞBB by [79]

a ¼ 2e−γ
ffiffiffiffiffiffiffiffiffiffiffiffi

π=0.9
p

l⊥e−
ffiffiffiffiffiffi

π=2
p

l⊥=að3DÞ ; ð4Þ
where l⊥ is the confinement oscillator length. Near the
39K-39K Feshbach resonance at 26G [80,81], one can tune

að3DÞBB in a wide range, keeping að3DÞFB ≈ −20 nm [82,83].

Then, taking að3DÞBB ¼ 7 nm and l⊥ ¼ 40 nm, which corre-
sponds to the confinement frequency ≈2π × 160 kHz
achievable in current experiments [84], we obtain aFB ¼
1 μm and aBB=aFB ¼ 7 × 10−5. Note that the FB molecules
are confinement induced [79], they require no FB Feshbach

resonance and can be formed in a quasi-2D atomic mixture
by three-body recombination [62]. Their large size
aFB ¼ 25l⊥ ensures the applicability of our two-dimen-
sional model.
Even though aBB=aFB is above the threshold for the FBB

trimer formation (see Fig. 1), collisions of two quasi-two-
dimensional FB molecules can lead to the relaxation
to deep molecular states of three-dimensional character.
The process requires three atoms to approach one another
to distances comparable to the van der Waals range (a few
nanometers), where the trapping potential can be neglected
and the reaction proceeds as the usual three-body recombi-
nation in three dimensions. Here the FBB relaxation
channel is dominant since the FFB one is suppressed
due to the Pauli exclusion. The corresponding three-body
recombination rate constant in three dimensions is K3∼
ðað3DÞFB Þ4=m, where m ¼ mF ≈mB and we have just picked

the largest of að3DÞFB and að3DÞBB [85].
The FBB relaxation rate in molecule-molecule collisions

for a given many-body state of the molecular gas is
obtained by multiplying K3 by the local FBB density
correlator ∼PmmGFBB. Here, Pmm is the probability of
finding a molecule (or, equivalently, a boson) in the
immediate vicinity of another molecule, i.e., within a
distance ∼aFB. This probability depends on the density
of molecules, their typical momenta, and scattering proper-
ties (S and ξ), and gets enhanced close to the resonance
[29]. In any case, for closely packed molecules (kFaFB ∼ 1),
Pmm saturates to one.
The quantity GFBB is the local FBB density correlator

for a molecule and a boson confined axially to l⊥ and
longitudinally to a surface ∼a2FB. Assuming the noninteract-
ing FBB wave function, we have GFBB ∼ l⊥−2a−4FB
and, accordingly, the relaxation rate ν ¼ K3GFBB∼
ðað3DÞFB =l⊥Þ4jEFBjðl⊥=aFBÞ2, which is much smaller than
jEFBj. The main suppression comes from the factor

ðl⊥=aFBÞ2 ≪ 1, relative to which ðað3DÞFB =l⊥Þ4 is only loga-
rithmically small [see Eq. (4)]. One can show [86] that
switching from the noninteracting to interacting FBB wave
function when calculating GFBB modifies only the logarith-
mic prefactor and leaves the main suppression coefficient
unchanged.We thus claim that the loss rate of the quasi-two-
dimensional molecules is much smaller than jEFBj. By
contrast, the relaxation rate of weakly bound three-dimen-
sional FB molecules in a similar closely packed configura-
tion would be comparable to their binding energy (see
Supplemental Material [86]). Remarkably, these two equally
strongly correlated systems, but in different dimensions, are
so unequal from the viewpoint of three-body correlations.
This phenomenon has the same physical origin as the
presence (in three dimensions) or absence (in two dimen-
sions) of the Efimov and Thomas effects for bosons [87,88].
In conclusion, weakly bound composite FB molecules

experience a p-wave attraction provided by the boson

FIG. 3. a2FB=S vs aBB=aFB for mF=mB ¼ 1 (green squares) and
mF=mB ¼ 2 (red circles).
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exchange and counterbalanced by the fermion centrifugal
barrier and Bose-Bose repulsion. The elastic and inelastic
molecule-molecule scattering properties are sensitive to the
dimensionality, Fermi-Bose mass ratio, and strength of the
Bose-Bose interaction relative to the Fermi-Bose one. The
quasi-two-dimensional isotopic 40K-39K mixture is a prom-
ising and accessible candidate for obtaining a strongly
p-wave-attractive Fermi gas. Further investigation of this
system (in particular, characterization of its p-wave paired
phase) can be performed by treatingmolecules as elementary
fermions, interacting with each other by a convenient model
potential (say, Gaussian) with properly tuned S and ξ.
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