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We show that the social dynamics responsible for the formation of connected components that appear
recurrently in face-to-face interaction networks find a natural explanation in the assumption that the agents
of the temporal network reside in a hidden similarity space. Distances between the agents in this space act
as similarity forces directing their motion towards other agents in the physical space and determining the
duration of their interactions. By contrast, if such forces are ignored in the motion of the agents recurrent
components do not form, although other main properties of such networks can still be reproduced.
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Understanding the mechanisms that drive the dynamics
of face-to-face interaction networks is crucial for better
analyses of spreading phenomena. In particular, phenom-
ena that evolve as fast as real-time face-to-face interactions,
such as respiratory transmitted diseases, word-of-mouth
information transfer, and viruses in mobile networks [1–3].
Furthermore, deriving efficient epidemic control strategies
requires an accurate description of fast-evolving contagions
[1,4–7]. However, a complete understanding of the proc-
esses responsible for the structural and dynamical proper-
ties of face-to-face interaction networks has been an elusive
task [3,8,9].
Face-to-face interaction networks portray social inter-

actions in closed settings such as schools, hospitals, offices,
etc. A typical representation consists of a series of network
snapshots. Each snapshot corresponds to an observation
interval, which can span from a few seconds to several
minutes depending on the devices used to collect the data
[10,11]. The agents (nodes) in each snapshot are individ-
uals and an edge between any two agents represents a direct
face-to-face interaction.
Analyses of such networks have uncovered universal

properties, such as the heavy-tailed distributions of the
interaction duration and time between consecutive inter-
actions, cf. [12]. Previous results point to the idea of social
attractiveness as a mechanism responsible for these universal
properties and for other structural characteristics of the time-
aggregated network of contacts, like its degree, weight, and
strength distributions [11,13,14]. Specifically, in the attrac-
tiveness model [13,14] agents have an activation probability
ri and a global attractiveness value ai that are sampled
uniformly at random from [0, 1]. Time is slotted and in each
slot each noninteracting agent i is active with probability ri.
Active agents perform random walks in a closed Euclidean
space moving towards a random direction every slot with a

constant velocity (displacement) v. Agents stop moving to
interact whenever they encounter another agent within a
threshold distance d. The activation probability represents
the activeness of each agent in the social event. The global
attractiveness of the agents defines an escaping probability
from the interactions. For instance, an agent i that has stopped
moving in order to interact with other agents within distance
d, can resume mobility with probability 1 −maxj∈N i

fajg,
where N i is the set of agents interacting with i [13].
Therefore, longer interactions occur when an individual with
a high global attractiveness aj is involved.
However, it has been recently revealed that face-to-face

interaction networks exhibit structural and dynamical
properties such as community formation, which originate
from motion patterns that are far from random [8]. In a
temporal setting, communities are dynamic, meaning that
their structure and size change over time. A common
strategy to track dynamic communities is to construct their
evolution timelines by aggregating connected components
of at least three nodes in different time slots, according to
some similarity measure [8,15]. In other words, the build-
ing blocks of dynamic communities are connected com-
ponents that appear recurrently. If we extract the connected
components in each time slot of a real face-to-face
interaction network, we can see that many of the exact
same components appear several times throughout the
observation period. Indeed, in Figs. 1(a)–1(c) we have
extracted and assigned identities (IDs), in order of appear-
ance, to the unique components found in three real-world
data sets from SocioPatterns [10]: a hospital, a primary
school, and a high school [16–18] (see Table I and
Supplemental Material [19], Secs. I, II, where we also
consider a fourth data set from a conference [12]). The blue
lines in Figs. 1(a)–1(c) represent recurrent components,
i.e., components that appeared at least once in a previous
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time interval. By contrast, in the attractiveness model
we observe very few recurrent components [Fig. 1(d) and
Supplemental Material [19], Sec. II], even though the
model accurately reproduces the broad distributions of
contact durations and of times between consecutive con-
tacts [Figs. 1(f) and 1(g)]. This is because in the model
nodes drift according to their own random trajectories and
the probability for a group of at least three nodes to meet
again is vanishing. In other words, components form in this
model purely based on chance.
Here, we present a model of mobile agents where their

motion is not totally random, but instead it is also directed by

pairwise similarity forces. We show that this model can
capture themost distinctive features of face-to-face interaction
networks including their observed recurrent component
patterns. In addition to the two-dimensional Euclidean space
where agents move and interact (an L × L square), agents in
the model also reside in a hidden similarity space, where
coordinates abstract their similarity attributes. Distances
between the agents in this space act as similarity forces
directing their motion towards other agents in the physical
space and determining the duration of their interactions. We
consider the simplest metric space as the similarity space,
which is a circle of radius R ¼ N=2π where each agent
i ¼ 1; 2;…; N is assigned a random angular coordinate
θi ∈ ½0; 2π�. Therefore, the similarity distance between two
agents i, j is sij ¼ RΔθij, where Δθij ¼ π − jπ − jθi − θjjj
is the angular distance between the agents. (We also consider
nonuniformly distributed coordinates in Supplemental
Material [19], Sec. VIII, obtaining similar results.)
Time in the model is slotted and at the beginning of

each slot agents can be in one of two states: inactive or
interacting. Inactive agents move in the slot only if they
become active, while interacting agents move only if they
escape their interactions. At the beginning of each slot t,
each inactive agent i is activated with a preassigned
probability ri. Furthermore, each interacting agent i escapes
its interactions with probability

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. Recurrent component patterns and distributions of contact durations and of times between consecutive contacts in three real-
world data sets and in simulated networks. (a)–(c) Components found in the first activity cycle of the hospital, primary school, and high
school (6, 8.6, and 5 h, respectively). (d) Components found in a simulation of the attractiveness model with the same duration as in (a).
(e) Same as (d) but with the FDM (force-directed motion) model. (f),(g) Distribution of contact duration and of time between
consecutive contacts in real and simulated networks. (h) Average number of recurrent components where an agent participates as a
function of its total number of interactions in real and simulated networks. The blue lines in (a)–(e) correspond to recurrent components
while the black lines to components appearing for the first time, i.e., to the unique components. The x axis is binned into 30 min
intervals, while the y axis shows the component IDs observed in each bin; all components consist of at least three nodes. The simulations
with the models use the parameters of the hospital (Table I and Supplemental Material [19], Sec. IV). In (f)–(h) the results with the
models are averages over 10 simulation runs. Results for all activity cycles, the conference data set, and for the simulated counterparts of
the rest of the real networks are found in Supplemental Material [19], Secs. II, III.

TABLE I. Analyzed data sets.N is the total number of agents; T
is the total duration of the data set in slots of 20 sec; n̄, l̄ are the
average numbers of interacting agents and links (interactions) per
slot. The activity cycles correspond to observation periods in
different days (see Supplemental Material [19], Sec. I). μ1, F0, μ2
are the FDM parameters used in the simulated counterpart of each
real network (see text).

Data set N T n̄ l̄ Cycles μ1 F0 μ2

Hospital 70 4400 7.09 4.7 4 0.8 0.12 0.9
Primary school 242 3100 56.38 40.57 2 0.35 0.2 0.78
High school 327 7375 41.89 25.56 5 1.2 0.11 0.86
Conference 113 7030 4.98 2.96 3 2.65 0.02 3.6
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Pe
i ðtÞ ¼ 1 −

1

jN iðtÞj
X

j∈N iðtÞ
e−sij=μ1 ; ð1Þ

where N iðtÞ is the set of agents that i is currently
interacting with and sij is the similarity distance between
agents i and j. The summands in Eq. (1) can be seen as
bonding forces that decrease exponentially with the sim-
ilarity distance, while parameter μ1 > 0 is the decay
constant controlling the importance of these forces as
the similarity distance increases and allowing us to tune
the average contact duration (Supplemental Material [19],
Sec. IV). The model assumes that the contact duration in
number of slots between two agents i, j is exponentially
distributed with rate sij=μ1. The discrete analog of this
distribution is the geometric distribution with success
probability pij ¼ 1 − e−sij=μ1. Therefore, Eq. (1) is the
average of pij; j ∈ N iðtÞ.
Each moving agent i in the slot updates its position

(xti, y
t
i) according to the following motion equations:

xtþ1
i ¼ xti þ

X

j∈SðtÞ
Fij

ðxtj − xtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtj − xtiÞ2 þ ðytj − ytiÞ2

q þ Rx
i ; ð2Þ

ytþ1
i ¼ yti þ

X

j∈SðtÞ
Fij

ðytj − ytiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtj − xtiÞ2 þ ðytj − ytiÞ2

q þ Ry
i ; ð3Þ

where SðtÞ is the set of all moving and interacting agents in
the slot, while Fij is the magnitude of the attractive force
between agents i and j, which also decreases exponentially
with their similarity distance,

Fij ¼ F0e−sij=μ2 : ð4Þ

Parameter F0 ≥ 0 is the force magnitude at the minimum
similarity distance, sij ¼ 0, while μ2 > 0 is the decay
constant controlling the importance of the force magnitude
as the similarity distance increases. Therefore, the sums in
Eqs. (2) and (3) are the total attractive forces exerted to
agent i by the agents j ∈ SðtÞ along the x and y directions
of the motion. The random motion components are
Rx
i ¼ v cosϕi, Ry

i ¼ v sinϕi, where ϕi is sampled uni-
formly at random from ½0; 2π� and v ≥ 0 is the magnitude
of the random displacement. We can think of Rx

i , R
y
i as

accounting for omitted degrees of freedom, akin to
Langevin dynamics [25]. At v ¼ 0 the motion becomes
deterministic, while at F0 ¼ 0 it degenerates to random
walks. Once the moving agents update their positions they
either transition to the interacting state if they are within
interaction range d from other noninactive agents, or
to the inactive state. We call the described model force-
directed motion (FDM) model. We make its implementa-
tion available at [26].

To understand how the formation of components
depends on F0, μ2, v, we first consider deterministic
motion. In this case, the magnitude of the expected agent
displacement is controlled by F0 and μ2. This magnitude
can be kept fixed if, when F0 decreases, μ2 increases
accordingly. As μ2 increases, larger components form that
involve agents at larger similarity distances, until the agents
eventually collapse into a giant component. At the same
time, the number of components initially increases and then
decreases, see Fig. 2(a). The motion in Eqs. (2) and (3) is
deterministic motion with random noise. This noise
decreases the chances for similar—close in the similarity
space—agents to meet, which reduces the size of compo-
nents. At the same time, it can either increase (if its
magnitude v is sufficiently small) or decrease (if v is
sufficiently large) the number of components [Fig. 2(b)].
To tune FDM’s parameters in simulations of real net-

works we follow the procedure in the Supplemental
Material [19], Sec. IV. In a nutshell, we fix v ¼ d ¼ 1.
The number of agents N and time slots T are the same as in
the real networks (Table I). The activation probability ri is
either ri ¼ 0.5 for every agent i (primary school and high
school), or sampled uniformly at random from [0, 1].
Parameters μ1, F0, μ2 (Table I) and the size of the Euclidean
space L (Supplemental Material [19], Table I) are adjusted
in order to approximately match the following quantities
between simulated and real networks: (i) the average
contact duration (using μ1); (ii) the average number of
recurrent components per interval of 10 min, while ensur-
ing a similar size of the largest component formed (using
F0, μ2); and (iii) the average agent degree in the time-
aggregated network (using L).
In Fig. 1(e) we see that the FDM can reproduce a similar

pattern of unique and recurrent components as in the
hospital [Fig. 1(a)], in stark contrast to the attractiveness

(a) (b)

FIG. 2. Formation of components in the FDM. (a) Number of
components formed (total and unique) in deterministic motion
(v ¼ 0) for pairs of parameters μ2 (bottom x axis) and F0 (top x
axis). (b) Same as (a) but for pairs of F0 and v ≥ 0. In both (a),(b)
as one parameter increases the other decreases so that the
expected agent displacement per slot is always ≈d ¼ 1. The
insets show the maximum and average size across all compo-
nents. In both plots N ¼ 242, in (b) μ2 ¼ 1. See also Supple-
mental Material [19], Sec. IV.
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model [Fig. 1(d)]. Similar results hold for all cycles of
activity and for all considered data sets (Supplemental
Material [19], Sec. II). In Fig. 1(h) we also see that the
model can capture the correlations between the average
number of recurrent components where an agent partici-
pated and the total number of interactions of the agent (see
also Supplemental Material [19], Sec. II. C). At the same
time, the model reproduces the broad distributions of
contact durations and of times between consecutive con-
tacts [Figs. 1(f) and 1(g)]. The model also adequately
reproduces a range of other properties of the considered real
networks, including weight distributions, distributions of
component sizes and of shortest time-respecting paths, and
group interaction durations (Supplemental Material [19],
Sec. III). It is then not surprising that the susceptible-
infected-susceptible (SIS) spreading process [28] behaves
similarly in real and simulated networks (Fig. 3). Figure 4
shows that agents close in the similarity space tend to stay
closer to each other in the Euclidean space throughout the
simulations and interact more often, as expected.
The exponential form of the attractive force in Eq. (4)

promotes locality and the formation of small components,
as observed in real data. This is also promoted by the metric
property of the similarity space, i.e., the triangle inequality,

which ensures that if an agent a is similar to an agent b and
b is similar to a third agent c, then c is also similar to a.
This means that these agents will tend to gather close to
each other in the Euclidean space forming triangle abc.
On the other hand, if similarity distances do not satisfy the
triangle inequality, then agents a and c might be close to
some other agents d and e, forming chain dabce in the
network. In other words, agents will tend to form larger
components. We verify this argument in the Supplemental
Material [19], Sec. VI, where we break the triangle
inequality by randomly assigning similarity distances to
all pairs of agents instead of assigning to the agents
similarity coordinates. In this way forces lose their locali-
zation effect and we see that a giant connected component,
nonexistent when the similarity space satisfies the metric
property, forms in the middle of the Euclidean space.
In summary, forces emerging from similarity distances in

metric spaces appear to provide a natural explanation for the
observed recurrent component dynamics in face-to-face
interaction networks. These forces direct the motion of the
agents in the physical space and determine the agents’
interaction durations. Motion based on these principles
can still capture a wide range of other main properties of
such networks, in addition to their recurrent component
patterns. The interactions do not have to be exactly face-to-
face or of few activity cycles. In the Supplemental Material
[19], Secs. II and III, we see that similar results hold in a
longitudinal data set from an MIT dormitory, where prox-
imity was captured if mobile phones were within 10 m from
each other [29].
The modeling approach we consider bears similarities to

N-body simulations and Langevin dynamics [25], sug-
gesting that similar techniques and approaches from these
well established areas of physics can be applicable to
contemporary network science problems. Yet, we note that
the similarity forces in our case only direct the motion of
the agents in the physical space, and do not depend on the
agents’ distances in this space akin to gravity.
We also observe that hyperbolic spaces appear to underlie

the topologies of traditional complex networks, whose
degree distributions are heterogeneous [30]. In this case,

FIG. 3. Average percentage of infected agents per time slot (prevalence) of the SIS model as a function of the infection probability α in
real and simulated networks (circles and triangles, respectively), for two recovery probabilities β. In the SIS each agent can be in one of
two states, susceptible or infected. At any time slot an infected agent recovers with probability β and becomes susceptible again, whereas
infected agents infect the susceptible agents with whom they interact, with probability α. To simulate the SIS process on temporal
networks we use the dynamic SIS implementation of the Network Diffusion Library [27]. See Supplemental Material [19], Sec. VII,
for further details.

(a) (b)

FIG. 4. Average Euclidean distance and number of interactions
between two agents as a function of their similarity distance, in
simulated counterparts of the Hospital, primary school, and high
school. The inset in (a) is an enlarged view of similarity distances
up to 5.
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the hidden distance between twonodes is not just the angular
distance RΔθ but the effective distance χ ¼ RΔθ=ðκκ0Þ,
where κ, κ0 are the expected degrees of the nodes [30]. One
can replace angular with effective distances in the FDM.
However, in all data sets we considered, the distribution
of κ s was quite homogeneous to justify the need for this
description [31]. Indeed, if we use effective distances in the
FDMwith the estimated κ s from the real datawe obtainvery
similar results (Supplemental Material [19], Sec. IX).
A natural direction for future work is the inverse problem

of inferring the similarity coordinates of agents given a
sequence of real network snapshots. Another direction is
extending the model with the addition of static nodes that
exist both in the physical and in the similarity space and
represent locations. Finally, it would be interesting to
investigate how social influence could also be incorporated
into the model, where interacting agents may influence
each other and become more similar [32]. This would result
in the agents moving both in the Euclidean and similarity
spaces. Taken altogether, our results pave the way towards
more realistic modeling of face-to-face interaction net-
works, which is crucial for understanding and predicting
social group dynamics and designing efficient epidemic
control and navigation [33,34] strategies.
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