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Vacancies in simple cubic crystals of hard cubes are known to delocalize over one-dimensional chains
of several lattice sites. Here, we use computer simulations to examine the structure and dynamics of
vacancies in simple cubic crystals formed by hard cubes, right rhombic prisms (slanted cubes), truncated
cubes, and particles interacting via a soft isotropic pair potential. We show that these vacancies form a
vacancy analog of the crowdion interstitial, generating a strain field which follows a soliton solution of
the sine-Gordon equation, and diffusing via a persistent random walk. Surprisingly, we find that the
structure of these “voidions” is not significantly affected by changes in density, vacancy concentration,
and even particle interaction. We explain this structure quantitatively using a one-dimensional model that
includes the free-energy barrier particles have to overcome to slide between lattice sites and the effective
pair interaction along this line. We argue that voidions are a robust phenomenon in systems of repulsive
particles forming simple cubic crystals.
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Many material properties of crystals are determined by
the formation and diffusion of small collections of point
defects inside the lattice. In crystals consisting of spherical
particles, these point defects are typically fairly localized,
primarily affecting the location of only a few particles,
and diffuse inside the crystal through hopping motions.
Therefore, imagining a point defect as localized to one
specific lattice point is fundamentally correct in many
cases, and forms a crucial ingredient in theories of solid-
state self-diffusion [1].
However, in some cases point defects take on forms that

are significantly extended in space, such as the interstitial
crowdion, which was proposed by Paneth in the 1950s [2],
and explored in multiple atomic crystals [3–6]. In a
crowdion, the lattice distortion due to the interstitial particle
is largely one dimensional, displacing particles in a chain
along a specific lattice direction, which can extend over a
large number of lattice sites. Such defects have been shown
to exhibit fundamentally different diffusion properties
compared to their localized counterparts [6,7], and have
triggered the formulation of simple models that can capture
their essential traits [8–12]. Specifically, one interesting
trait of the crowdion defect is that the displacements of
the particles in the defect are essentially one dimensional
and can be accurately captured by the Frenkel-Kontorova
model [8,12], which in the continuum limit reduces to the
sine-Gordon equation. Recent experimental work has
hinted that a vacancy equivalent of this extended configu-
ration, called an “anticrowdion” [9] or a “voidion” [13],
may exist in metals, where N − 1 particles are spread over
N lattice sites in a chain [13]. However, as the atomic

structure around these extended defects is typically not
accessible in experiments, it remains unclear whether
these voidions exist, and to what extent they are related
to crowdions.
Hard colloidal particles with different shapes have

emerged as an excellent model system for exploring
crystalline phase behavior (see, e.g., Refs. [14–36]). An
intriguing family of such colloidal model systems was
shown to form crystals containing extended vacancy
defects [32–34]. Although particles in this family have a
variety of shapes and symmetries, including cubes, trun-
cated cubes, and right rhombic prisms (“slanted cubes”),
they are all predicted to form a simple cubic crystal phase
with an abnormally high defect concentration, orders of
magnitude higher than that of the archetypical hard-sphere
crystal [37]. Experimentally, these delocalized defects have
indeed been observed directly in crystals of (almost hard)
cubic gold nanoparticles [35]. The presence of these defects
has a profound effect on the crystal dynamics close to
melting, resulting in self-diffusion rates as high as 30% of
those in the corresponding fluid [32]. Both the delocaliza-
tion and high diffusivity of these vacancies are strongly
reminiscent of crowdion interstitials, suggesting that they
may be a direct realization of the hypothesized voidion.
To test this hypothesis, we use computer simulations to

examine the structure and dynamics of point defects in
simple cubic crystals formed by hard cubes, slanted
cubes, truncated cubes, and particles interacting via a soft
isotropic pair potential. We show that both vacancies and
interstitials are characterized by a strain field closely
following a soliton solution of the sine-Gordon equation

PHYSICAL REVIEW LETTERS 121, 258001 (2018)

0031-9007=18=121(25)=258001(5) 258001-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.258001&domain=pdf&date_stamp=2018-12-18
https://doi.org/10.1103/PhysRevLett.121.258001
https://doi.org/10.1103/PhysRevLett.121.258001
https://doi.org/10.1103/PhysRevLett.121.258001
https://doi.org/10.1103/PhysRevLett.121.258001


and that the dynamics of the vacancies are well described
by a persistent random walk, similar to that seen in
crowdions [6,7,12]. We then show that the structure of
the vacancies can be explained quantitatively by consider-
ing the free-energy barrier particles have to overcome to
slide between lattice sites. Surprisingly, our results dem-
onstrate that this structure is not significantly affected
by changes in density, vacancy concentration, and even
particle interaction. Moreover, as we observe these defects
in all the simple cubic crystals of repulsive particles we
have investigated—ranging from hard anisotropic particles
to a much longer-ranged soft isotropic potential—we argue
that voidions are a robust phenomenon in systems of
repulsive particles forming simple cubic crystals.
We begin our investigation by characterizing the dis-

placement field of particles around defects in equilibrium
crystals of hard cubes (i.e., overlaps between particles are
not allowed), with edge length σ. We perform Monte Carlo
and event-driven molecular dynamics (EDMD) simulations
[32,38,39] of three-dimensional crystals of N particles.
Each simulation is initialized as a perfect crystal
containing its net equilibrium concentration of vacancies
α ¼ ðNL − NÞ=NL, where NL is the number of lattice sites.
Note that in principle, additional vacancy-interstitial pairs
can form which increase the total number of vacancies.
The net equilibrium vacancy concentration for each crystal
density is taken from previous free-energy calculations
presented in Refs. [32,34]. In each simulation, we track the
defects, their length, and their orientation by examining the
occupancy of Wigner-Seitz cells in the crystal [see
Supplemental Material (SM) [40]]. Examples of a vacancy
and an interstitial are shown in Fig. 1(a). Clearly in both
cases, the defect is extended over a long chain of lattice
sites. Note that the number of vacancies is much larger than
the number of interstitials in these systems. To provide
a better image of the distribution of defects in a crystal,
Fig. 1(b) shows all vacancies in a typical crystal of hard
cubes, illustrating that the defects are delocalized with

random positions and orientations along the three crystal
axes. Interestingly, as shown in the SM [40] and discussed
briefly in Ref. [32], despite the high concentration of these
defects, they essentially do not interact.
In order to characterize the structure of the defects, we

measure the average particle displacements un ¼ xn − an
around vacancies and interstitials, along the defect direction,
where xn is the position of particle n along the defect and a is
the crystal lattice spacing. We choose n ¼ 0 to correspond to
the particle just before the defect center and use “standard”
boundary conditions: un¼−∞ ¼ a, un¼∞ ¼ 0 for the inter-
stitial and un¼−∞ ¼ 0, un¼∞ ¼ a for the vacancy. We plot
these displacement fields for a system of hard cubes at
packing fraction ϕ ¼ 0.60 in Fig. 1(c), where ϕ ¼ Nv0=V,
with v0 the volume of the particle and V the volume of the
system. From these displacement fields we see that the
vacancies affect the behavior of about 10 particles on
average, while for the interstitials it is closer to 20.
One important characteristic of a crowdion defect is

that the displacements of the particles in the defect are
essentially one dimensional and can be well described by
the Frenkel-Kontorova model [8,12]. Hence, to determine
whether the defects are realizations of crowdions and
voidions, we compare our results to the soliton solution
of the sine-Gordon equation [black lines in Fig. 1(c)], i.e.,
the continuum limit of the Frenkel-Kontorova model using
a single fitting parameter to match the extension of the
defect (see SM [40]). As Fig. 1(c) shows, we observe
excellent agreement for the interstitial defects and good
agreement for the vacancy defects, indicating that at least
the structure of the defects is consistent with crowdions and
voidions. This is somewhat surprising, since the classic
Frenkel-Kontorova model assumes harmonically interact-
ing particles in a periodic sinusoidal potential, while the
interactions between hard cubes are strongly anharmonic.
As vacancies are the predominant type of defect in these

crystals, in the rest of this Letter we focus purely on the
voidions.

(c)(b)(a)

FIG. 1. (a) Typical local structure of a vacancy in a crystal of hard cubes at packing fraction ϕ ¼ 0.65 (top) and an interstitial at
ϕ ¼ 0.60 (bottom) delocalized over a chain of particles. Particles that are part of the defect are colored red. (b) Tracking results revealing
the position, direction, and length of extended vacancies in a crystal of hard cubes at ϕ ¼ 0.65. Particles that are part of a vacancy are
shown at their actual size while the other particles are shown much smaller. (c) Averaged displacement field along the vacancy (solid
markers) and the interstitial (open markers) for a hard-cube system at ϕ ¼ 0.60. The displacements inside these defects follow the
soliton solution to the sine-Gordon equation (black lines).
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To further confirm that the vacancies are indeed well
identified as voidions, we now turn our attention to their
dynamics using EDMD simulations. In Fig. 2(a), we plot
the mean squared displacement as a function of time for the
center of the vacancies in crystals of hard cubes at their
equilibrium vacancy concentration. Here our time unit is
τ ¼

ffiffiffiffiffiffiffiffiffiffiffi

βmσ2
p

, where m is the mass of a particle and
β ¼ 1=kBT with kB Boltzmann’s constant and T the
temperature. Counterintuitively, the vacancy diffusivity
goes up with increasing packing fraction in contrast to
vacancy diffusion in most systems, where the diffusivity
goes down drastically with increasing packing fraction
(see, e.g., Ref. [41]). A typical trajectory of such a defect is
shown in Fig. 2(b). Clearly, the vacancy diffuses by gliding
along the main crystalline lattice directions, and from time
to time, by reorienting. The gliding process itself requires
very little activation energy, requiring only very small
displacements of each particle in the defect. Reorienting,
on the other hand, requires the vacancy to shrink to a single
lattice site, and then regrow in a new direction. This is an
activated process that occurs on timescales much slower
than the gliding diffusion, resulting in a persistent random
walk as seen in crowdions [6,7,12].
The diffusion in this system is thus governed by

two separate timescales: the one-dimensional diffusion
and the timescale associated with reorientations.
Interestingly, as shown in the SM [40], the reorientation
time increases with packing fraction, implying that the
defects glide for longer along the same axis and resulting
in a faster overall diffusion. Note that since the equilib-
rium defect concentration decreases rapidly with packing
fraction [32], the total self-diffusivity of the particles in
the crystal still slows down with increasing packing
fraction.
In summary, the vacancies observed in the simple cubic

crystals of hard cubes clearly show strong similarities to
crowdions in atomic systems, in terms of both structure and
diffusive behavior. Hence, we identify these vacancies as a
vacancy analog of crowdions: voidions.

To determine the robustness of these defects in simple
cubic lattices, we use Monte Carlo and EDMD simulations
in the canonical ensemble to explore three additional model
systems for repulsive particles that form simple cubic
lattices, namely, slanted cubes with a slant angle θ ¼
72.5° [34], truncated cubes [33] (see SM [40]), and a soft
isotropic repulsive pair interaction (ISO), introduced in
Refs. [42,43]. A model of the slanted cube and the ISO pair
interaction are shown in Figs. 3(a) and 3(b), respectively.
In Fig. 3(c), we plot the average displacement field around
a vacancy for both cubes and slanted cubes (with slant
angle θ ¼ 72.5°) at several packing fractions. Surprisingly,
the displacement fields for the different packing fractions ϕ
and for the two particle shapes collapse onto a single curve
when the displacements are normalized with respect to the
lattice spacing a. Furthermore, in Fig. 3(d), we plot the
same displacement fields for the ISO potential, at several
number densities in the regime where the simple cubic
lattice is stable. We again observe a similar defect shape,
which is independent of the density. A similar result for
truncated cubes is shown in the SM [40]. In all cases, the
displacement fields suggest an average length of vacancies
of around 10 particles.
In order to understand the mechanism which controls the

length of these defects, we draw inspiration from the
Frenkel-Kontorova model and consider our defect as a

(a) (b)

FIG. 2. (a) Mean squared displacement of the center of the
vacancies for the hard-cube system at different packing fractions.
(b) Trajectory of the center of a vacancy in the hard-cube system
at a packing fraction ϕ ¼ 0.65.

(a)
(b)

(c) (d)

FIG. 3. (a) Model of a slanted cube with slant angle θ ¼ 72.5°.
The vectors spanning the shape are given by v1 ¼ fσ; 0; 0g,
v2 ¼ f0; σ; 0g, and v3 ¼ fσ cos θ; 0; σ sin θg. (b) Plot of the soft
isotropic interaction potential from Refs. [42,43]. Note that here σ
is an arbitrary length unit. (c) Averaged displacement field along
the vacancy at different ϕ for cubes (circles) and slanted cubes
(crosses). (d) Averaged displacement field along the vacancy for a
simple cubic crystal of spheres interacting through the isotropic
potential shown in (b), for different densities. The black lines in
(c) and (d) correspond to fitting the data to the soliton solution to
the sine-Gordon equation.
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one-dimensional row of particles, which experiences an
effective periodic potential due to the rest of the crystal.
However, instead of assuming harmonically interacting
particles in a sinusoidal potential, we use the true particle
interactions and measure the effective free-energy land-
scape. To measure this effective potential, we perform
Monte Carlo simulations of defect-free crystals where a
single row of particles is subject to an additional external
periodic potential VðxÞ, where x is measured along the axis
of the chosen row. This potential is then tuned (see SM
[40]) until the density profile ρðxÞ along the row is constant,
indicating that the imposed external potential exactly
cancels out the effects of the rest of the crystal on the
particle positions along the row. Hence, the particles in the
row experience an effective potential UðxÞ ¼ −VðxÞ from
the rest of the crystal, on top of the interactions experienced
between particles within the row.
We plot UðxÞ for several number densities of the ISO

system in Fig. 4(a). In all cases, UðxÞ shows a clear
minimum at x ¼ 0, corresponding to the equilibrium lattice
position, and a peak at x ¼ a=2, representing a free-energy
barrier inhibiting sliding between lattice sites. We now
impose the measured potentials UðxÞ to simulate a sim-
plified model of the defect by fixing a row of particles
(interacting via the ISO interaction) along the x axis with a
single vacancy, and we again measure the displacement
field around the defect. The resulting displacement fields
are compared to those measured in the full crystal in

Fig. 4(b), showing excellent agreement for all densities.
Note that the agreement at different densities is not trivial,
as both the strength of UðxÞ and the spacing between the
particles (and hence their interaction strength) are density
dependent (see SM [40]).
We repeat this procedure for the system of hard cubes,

and show the effective free-energy barrierUðxÞ in Fig. 4(c).
In comparison to the isotropic potential, the barrier shape
for cubes is significantly more complex, with the top of the
barrier flattening and even showing a secondary minimum
at high packing fractions. In this case, simulating an one-
dimensional system using UðxÞ is complicated by the
presence of rotational degrees of freedom, which are
inhibited by interactions with the rest of the crystal. To
approximate this, we simulate cubes confined in a mean-
field square “tunnel” consisting of four hard walls at a
distance set by the lattice constant (see SM [40]). Within
this approximation, we again find excellent agreement
for the displacement field around a vacancy, as shown in
Fig. 4(d). Note that including the rotational degrees of
freedom is essential in order to capture the correct vacancy
length and shape.
This toy model clearly shows that the vacancy displace-

ment fields arise from a subtle competition between the
free-energy barriers and effective interparticle repulsions.
Specifically, the density-independent displacement field in
the cubes can be explained by an increase in barrier height
and width as a function of density, which is compensated
by a stronger interparticle repulsion due to the smaller
lattice spacing. As shown in the SM [40], increased particle
alignment also affects the effective repulsion, but is
dominated by the effects of the lattice spacing. Similarly,
in comparison to the cubes, the ISO system has much
higher barriers, but also much stronger effective repulsions,
resulting in a similar defect length. What remains a
mystery, however, is why in each case of repulsive particles
forming simple cubic crystals studied so far, this competi-
tion serendipitously results in essentially the same dis-
placement field—with a length of approximately 10
particles—almost entirely independent of interaction, par-
ticle shape, and density.
The dependence of the defect structure on the competi-

tion between the free-energy barriers and the interparticle
repulsions hints at a reason we observe these defects in
simple cubic crystals of hard particles, and not in more
highly coordinated lattices like face-centered-cubic crys-
tals. Specifically, on lattices with low coordination num-
bers, the number of particles contributing to the barrier is
low, resulting in lower barriers in comparison to the
interparticle interactions. Moreover, this mechanism also
explains why such defects have not been observed more
frequently: in attractive systems, which are more com-
monly found in nature, the attractions can both increase
the barrier and remove the repulsions necessary to have
the particles spread along the rows. Indeed, attractive

(a)

(c) (d)

(b)

FIG. 4. (a) Free-energy barriers UðxÞ for the ISO system at
different densities. (b) The resulting displacement fields obtained
by single-row simulations for a vacancy using these free-energy
barriers (crosses), compared to the displacement fields as mea-
sured in the full system (circles). (c),(d) Free-energy barriers and
displacement fields for the hard-cube system. In (b) and (d) colors
are the same as in (a) and (c). The black lines in (b) and
(d) correspond to fitting the data to the soliton solution to the sine-
Gordon equation.
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interactions have been demonstrated to strongly suppress
vacancy delocalization in simple cubic crystals of cubic
nanoparticles [44]. Hence, the attractions in such systems
need to be tuned to be weak in order to observe delocalized
vacancies [35].
In conclusion, we have demonstrated the existence of

voidions in simple cubic crystals formed by a range of
repulsive potentials, and in fact, every repulsive potential
we have examined shows stunningly similar vacancy
structures that are essentially density independent. We
have also elucidated a mechanism which accurately cap-
tures the extension of the vacancies, demonstrating that the
length of the vacancies is controlled by a complex interplay
between (low) free-energy barriers in rows of particles and
the particle interactions. Our results clearly demonstrate
that voidions are a common property of simple cubic
lattices of repulsive particles.
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