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We investigate the electronic and transport properties of topological and nontopological InAs gsBig ;5
quantum dots (QDs) described by a ~30 meV gapped Bernevig-Hughes-Zhang (BHZ) model with
cylindrical confinement, i.e., “BHZ dots.” Via modified Bessel functions, we analytically show that
nontopological dots quite unexpectedly have discrete helical edge states, i.e., Kramers pairs with spin-
angular-momentum locking similar to topological dots. These unusual nontopological edge states are
geometrically protected due to confinement for a wide range of parameters and remarkably contrast with
the bulk-edge correspondence in topological insulators, as no bulk topological invariant guarantees their
existence. Moreover, for a conduction window with four edge states, we find that the two-terminal

conductance G versus the QD radius R and the gate V', controlling its levels shows a double peak at 2e¢%/h

for both topological and trivial BHZ QDs. This is in stark contrast to conductance measurements in 2D
quantum spin Hall and trivial insulators. All of these results were also found in HgTe QDs. Bi-based BHZ
dots should also prove important as hosts to room temperature edge spin qubits.

DOI: 10.1103/PhysRevLett.121.256804

Introduction.—Topological insulators (TIs) are a new
class of materials having the unusual property of being an
insulator in bulk with robust gapless helical states localized
near their edges (2D TIs) and surfaces (3D TIs) [1-4].
Following these pioneering works, a few other TI proposals
[5-11] have been put forward with some experimental
support [12,13]. More recently, topological quantum dots
(QDs) with cylindrical confinement have been investigated
[14-27]. Their spectra feature discrete helical edge states
protected against nonmagnetic scattering and show spin-
angular-momentum locking. These states are potentially
important for spintronics [15,16], quantum computation,
and other quantum technologies [14,17,18].

Here we demonstrate that nontopological QDs defined in
InAsBi wells obeying the effective Bernevig-Hughes-
Zhang (BHZ) model with cylindrical confinement—BHZ
dots—feature helical edge states geometrically protected
due to confinement (Fig. 1). This surprising result contrasts
with the usual bulk-edge correspondence in TIs, as the
nontopological dots here—despite having a zero bulk topo-
logical invariant—exhibit edge states with spin-angular-
momentum locking similar to topological dots [14-25].
Interestingly, our quantum transport calculation shows that
circulating currents [28,29] (Fig. 2) and the two-terminal
linear conductance G [30] (versus the dot radius R and the
gate V, controlling its levels, Fig. 3) of nontopological and
topological QDs are essentially identical. More specifically,
for BHZ dots with two Kramers pairs of edge states,
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FIG. 1. (a)InAsgg5Bij 15 QW subbands versus the well thickness

d. (b) Schematic of a cylindrical QD with helical edge states. Energy
levels versus the total angular momentum j, for (c) a topological
InAsggsBip 15 BHZ dot with R = 60 nm, (d) an ordinary (non-
BHZ) InAs dot with R = 30 nm, and (e) a trivial InAs(gsBig |5
BHZ dot with R = 30 nm. The curved arrows denote the forbidden
and allowed transitions. (f)—(h) Probability densities \1,1/]+ " |2 for the

edge states in (c) and (d) and bulk states (g) (see ellipses).
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G shows double-peak resonances at 2e*/h, separated by a
dip due to destructive interference in both regimes. When
bulk- and edge-state Kramers pairs coexist and are degen-
erate, both regimes show a single-peak resonance also at
G =2¢?/h. Our findings blur the boundaries between
topological and nontopological BHZ dots for the appear-
ance of protected helical edge states and for the behavior of
conductance measurements.

We also predict that InAs;_,Bi,/AISb quantum wells
(QWs) become 2D topological insulators for well widths
d > 6.9 nmand x = 0.15, with large inverted subband gaps
~30 meV (>kgT) that should enable room temperature
applications [Fig. 1(a)]. Our BHZ dots are obtained by
further confining these Bi-based wells with soft and hard
walls. Our analytical QD eigenenergies and wave functions
(Fig. 1) for both topological and nontopological regimes
show that the helical edge states occur in a wide range of QD
radii. We note that many Bi-containing compounds (includ-
ing chalcogenides [4]) are known TIs, and InBi in mono-
layer or bilayer form [31] has been suggested to show
nontrivial topological characteristics. Our findings also hold
for HgTe-based systems (see Supplemental Material [32]).

New 2D topological insulator: InAsgsBig 15/AlSb.—
The response of the electronic structure of InAs to the
addition of the isoelectronic dopant Bi [33-35] is well
described within valence band anticrossing theory [53-56].
Bi provides a resonant state within the valence band
(complementary to the resonant state in the conduction
band generated in the dilute nitrides such as GaAs;_,N,),
which strongly pushes up the valence band edge of InAs as
Bi is added. The small band gap of InAs allows it to close
for approximately 7.3% of Bi [33-35] and for inversion of
the conduction and valence bands similar to HgTe for larger
Bi percentage. We determine the electronic states of an
InAs;_,Bi,/AISb QW grown on a GaSb substrate (see
Supplemental Material [32], Sec. I) within a superlattice
electronic structure calculation implemented within a 14
bulk band basis [36] and obtain the zone-center [I" point,
Fig. 1(a)] quantum well states. From those, we derive

momentum matrix elements and the other parameters of the
BHZ Hamiltonian. We obtain a crossing between the
lowest conduction subbands |E;£) and the highest valence
subbands |HH =) at the critical well thickness d.=6.9nm.
This crossing characterizes a topological phase transition
between an ordinary insulator (d < d,.) and a 2D TI
(d > d,) with an inverted gap ~30 meV [Fig. 1(a)].

Model Hamiltonian for a cylindrical BHZ dot.—We
consider the BHZ Hamiltonian describing the low-energy
physics of the |E;+) and |HH %) subbands,

Hk) 0 )

0  H*(-k) ()

H(k) = <

where H(k) = (C — Dk?)1;,, +d -6 and d(k) = (Ak,,
—Aky, M — Bkz). Here, k is the in plane wave vector and &
are the Pauli matrices describing the pseudospin space. The
parameters A, B, C, D and M, calculated within a super-
lattice k - p electronic structure calculation [36], depend on
the QW thickness d and are given in Table (S1) of the
Supplemental Material [32] for d = 6 nm (x = 0.15) and
d =8 nm (x = 0.15). We define our QDs by adding to
Eq. (1) the in plane cylindrical confinement [14-26]

VC:<V(:>)GZ V((r))(rz)’ V(r):{i/IO—M :ﬁ,

(2)

where M, — M > 0 defines the equal strength soft-wall
barriers for electrons and holes [37]. Here we focus on the
hard-wall case (M, — o0), as it is simpler analytically.
In the Supplemental Material [32], we discuss the soft-wall
case, which qualitatively shows the same behavior.

BHZ dots: Eigensolutions.—We solve [H(k) 4+ V ]y =
ey in polar coordinates: k, & ik, = —ie* [0, + (1/r)dy]
and k> =—[0?+(1/r)0,+ (1/r*)33]. By imposing
w(r,0) =0 at r = R, we obtain the transcendental equa-
tion for the discrete eigenenergies and eigenfunctions

EX —C-M Ef -C-M
R(Ej ) = b5 Liwle (EL)R] _ 2(Ef,) — %55 Liwslhe (BT )R] G)
I, a4 (E7 )R] )
+ JzF3 Jz i(6/2
Ne'l:f <IJ':3F%[’1+<EJ}AVHM - I, (B )R] iy :FLM—(E;'E,n)rDeq: ©/2)
Wi,n(r, 9) = A (D+B)22 (Y, )-E% ,+C+M :‘; IJ.Z;%[/L(Eiﬂ)R] . 02 (4)
iiAL(E;;) (Ijz$%[’1+ (Ejz,n>r] - 1]_#%[,1,(5]#2.")1%] Ij,?%[ﬁ— (Ejz,n)r]> e
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Here I; [44(E ,)r]. is the modified Bessel function
of the first kind, N is a normalization factor, and
AL(ES ,)=-F++/F*=Q* with F=3{[A*/(D*-B?)]-
(E5 ,—C=M)/(D+B)]-[(E] ,—C+M)/(D=B)]} and
Q* = [(ES , - C)*=M?]/(D*~ B*). The + signs in
Egs. (3) and (4) label the “spin” subspaces in the BHZ
model (i.e., its two 2 x 2 blocks) [57] and arise as the
time reversal symmetry operator @ = —ic, ® 1;,,K com-
mutes with H (k) in Eq. (1). The w™ states in (4) form a
Kramers pair, i.e., @wz,n(r, 0) = z//:jz.n(r, @). The quan-
tum number j, corresponds to the z component of the total
angular momentum 7, = —ihdy + ho, ® (7o — 7,/2) that
obeys Ty, (r,0) = hjwy (r.0), j.==+5.%3, ...
Incidentally, j, also denotes the parity of the QD states
defined via the inversion symmetry operator Z (r,0) —
(r.0+ ), satisfying Tyi ,(r.0) = (=1)"Fiys (r.0).
Both J, and 7 commute with the QD Hamiltonian. The
quantum number n arises from the radial confinement of
the dot; we index our energy spectrum such that, for each j,
and o(=+), n=1,2,3,... n=-1,-2,-3,...) for
positive (negative) energies.

In Figs. 1(c)-1(e), we plot the InAs;_,Bi, dot energy
levels [Eq. (3)] for topological (x = 0.15, d =8 nm,
R = 60 nm), ordinary (x =0, d =6 nm, R =30 nm),
and trivial (x =0.15, d =6 nm, R =30 nm) cases,
respectively. The ordinary InAs QD with its noninverted
large gap is considered here for comparison (see
Supplemental Material [32], Sec. IV). Figures 1(f)-1(h)
show the edge and bulk states grouped by the ellipses in
Figs. 1(c)-1(e). To gain insight into the origin of the edge
states in both topological and nontopological dots, next we
look at Eq. (4) in the asymptotic limit /IT(E;-’Z.n)r >m =
1; [A.(ES ,)r] — exp[4,(E] ,)r] to leading order (this is the
parameter range of our Bi-based dots, see Supplemental
Material [32], Sec. VI).

For  topological BHZ dots (M <0) with
M < E? , <=M, we find real 1. >0 =y ~ aer" +

bet+r [Eq. 4)], a, b complex spinors (see Supplemental
Material [32], Sec. VI). This asymptotic form of ¢
demonstrates its edge state character [Fig. 1(f)] as y§
peaks near r = R [y (R) = 0 for hard wall], similar to that
of the 2D TIs. For E;’n <M or Ejn > —M, edge and
extended (“bulk”) states coexist.

Geometrically protected trivial edge states.—For non-
topological BHZ dots with EY , within the valence states

[Fig. 1(e)], A_ is purely imaginary, A, > 0, and

(37.) ()

(a) Topological (b) Trivial

4 3
4 O ——
4 3
| —3

—40 r(nm) r(nm) 40

40 —40

-3.5nA.nm™ 3.5nA.nm™

FIG. 2. Spin-up circulating currents for topological (a) and
trivial (b) edge states j, :% and j, = % within the gray area in
Figs. 1(c) and 1(e). The topological and trivial circulating
currents are essentially the same. The horizontal white lines
delimit the QW barriers.

where ¢, and d, are complex amplitudes. The J,,(|4_|r)’s
oscillate with r and have zeros at af, [J,(a,) =0,
n=20,1,2,3,...]. Here, however, they grow monotoni-
cally with r within the dot for ES , in the gray area of
Fig. 1(e). This is due to |A_|R < a,/2 for the parameters of
our Bi-based BHZ dot in the nontopological regime (see
Supplemental Material [32], Sec. VI). Similar to the
topological dot case (previous paragraph), WS in Eq. (5)
peaks near r = R and thus describes ‘“edgelike” states
[Fig. 1(h)]. The parameter A_ controls the degree of
localization of the trivial edge states (see Supplemental
Material [32], Sec. VI). In addition, as the energies of
extended and edgelike states depend differently on the dot
radius R, we find that QD confinement precludes the
coexistence of some of these states in our nontopological
BHZ dots [Fig. 1(e), see also Supplemental Material [32],
Sec. VIL.] That is, confinement gives rise to a single
geometrically protected Kramers pair of dot states per
energy within the gray area of Fig. 1(e). This holds for a
wide range of QD radii and BHZ parameters (e.g., those
of HgTe/CdTe QDs; see also Supplemental Material,
Secs. V=VIII [32]).

In contrast, ordinary cylindrical InAs QDs defined from
InAs wells with parabolic subbands do not have protected
edgelike states [Figs. 1(d) and 1(g)]. These non-BHZ

o B E+ HH,+
dots have the degeneracies E.'~, =FE'" | and E "} =
JFpn —J:AEpn JFan
HH,* . . .
E in3 ,» Which allow for elastic scattering between these
—J 7t

levels, thus precluding protection [58]. This picture still
holds in the presence of spin-orbit and electron—heavy-hole
mixing effects (see Supplemental Material [32], Sec. IV).

Circulating current densities: j(r).—We define j(r) =
(en/mo)Im{y" (r)Viy(r)}, where the total QD wave function
w(r) = > ;F;(r)u;(r) is expressed as the sum of the product
of the periodic part of the Bloch function u;(r) of band i at the
I" point and its respective envelope function F;(r). The average
current over the unit cell is given by [28,29] {j)(r) =
(efr/mo)Im_; {7 (r)F;(r) ;| V]u;) + 6,87 (r)VF;(r)}.
Using the wave function (4) (see Supplemental Material
[32], Sec. IX), we find

256804-3



PHYSICAL REVIEW LETTERS 121, 256804 (2018)

N2 (V2P i .
) (1) = ieg{fT|ﬁ<z>||f§E<z>|rgf;< i (1)

ho(.
rmg
(07
4+ —
rmy

where my is the bare electron mass and P is the Kane
parameter [29,38,46] appearing due to the coupling
between conduction and valence bands. Here, the first
term is the “Bloch velocity” contribution to the average
current as it stems from the periodic part of the Bloch
function, while the second term is the contribution from
the envelope function [28,29]. Using j . ~1, P =
0.9055 eVnm [29], and r~R =40 nm, we estimate
the ratio of the Bloch to envelope contributions

(V2P/h)/(2 x h/Rmg) ~ 340, thus showing we can
neglect the envelope velocity part in agreement with
Ref. [29] (see Supplemental Material [32], Sec. IX for a

_j:i% j::F% .
=15, and Ty, =

1) QR+ QPIERN
>|f3 ORIEE (- >|2}9, ©)

detailed comparison). Since Ij ﬁ =

—J:+
IHHl’n, we find

i) ==, ) ), )

which shows the helical nature of the edgelike states within
the gray region in Figs. 1(c) and 1(e).

To compare the topological QD edge states and the
edgelike states in the trivial QD, we plot Eq. (6) in Fig. 2
for the spin-up QD levels j, =3/2 and j, =5/2 [see
Figs. 1(c) and 1(e), gray area] with R =40 nm.
Interestingly, although the j, =3/2 wave functions of
both trivial and topological QDs are extended, their
circulating currents are localized near the QD edges.
This arises from the product of the upper and lower wave
function components in Eq. (6). We find the highest current
densities for the trivial edgelike states (due to the smaller d)
[Figs. 2(a) and 2(b)]. However, the integrated current
density over half of the cross section of the QD I<i =
[dS- (Gt ,) = [Rar [*7, dz]E )| ~0.17 uA for both
topological and trivial edge states to within 2%; 1i.e., it
shows no significant difference.

Linear conductance.—To further compare the topologi-
cal and trivial edgelike states, we calculate the two-terminal
linear-response QD conductance G (at T = 0 K) [30] by
coupling the dots to left (L) and right (R) leads [Fig. 1(b)].
Our Hamiltonian reads

H = ZF,‘ de + ng ack o'ck c + Z V;< adjckalf

ky.a.0 i.ky.a.0

+) tydid; +He., (8)
i#]

(a) Topological / Trivial QD -

edgelike states

S0 = 30nm.
50 eV, (meV) —
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-40 =30

edgelike states

1

G(e?/h)

FIG. 3. (a) Schematic QD Hamiltonian for the four topological
and trivial edge states with j, = +7/2 and j, = 4+9/2. QD
conductance G at T =0 K for the topological (b) and trivial
(c) edge states in Fig. 3(a). (d) Same as (a) for the coexisting
Jj. = =*1/2bulk and j, = £9/2 edge states and the correspond-
ing G for the trivial case (e). Here we use =1 meV and
I' =4 meV (see Supplemental Material [32], Sec. X).

where d:f creates an electron in the QD state |i) [Eq. (4)]
with energy e; = ¢&;(R,V,) [obtained from Eq. (3)], i
denotes the set of QD quantum numbers j,, + (or 1,
[57]), and n (V, is an additional gate controlling the dot
levels with respect to the Fermi energy ¢ of the leads), and
czu{; creates an electron in the lead @ = L, R with wave
vector k,, energy & ,, and spin component ¢ = 1, |. The
spin-conserving matrix element Vi , denotes the dot-lead
coupling, while #;; couples the dot levels Next we focus on
only four QD states with well-defined &, as shown in
Fig. 3(a). This can be achieved by tuning the conduction
window and the QD levels via external gates.

Figures 3(b) and 3(c) show the QD conductance
g= QT +g , for the four topological and trivial edge
states with j, = £7/2 and j, = £9/2 [see green triangles
in Figs. 1(c) and 1(e)], as a function of the QD radius R and
the gate potential V. The radius R can be varied exper-
imentally through an electrostatic confining potential [59].
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The conductance for both the topological and trivial
edgelike states show similar behaviors, i.e., double
Lorentzian-like profiles centered approximately at the
QD levels &;(R.V,), separated by a dip, and peaked at
2¢?/ h; this is clearly seen in the insets of Figs. 3(b) and 3(c)
for two distinct R’s. The dip follows from a destructive
interference between the two same-spin edge states in the
overlapping tails of the broadened QD density of states.
See Supplemental Material [32] (Sec. X) where the
conductance G is expressed as a sum of interfering
amplitudes using Green functions [47].

Interestingly, bulk- and edgelike valence edge states can
coexist and even be degenerate in energy. In this case, our
calculated conductances exhibit a crossover from a double-
peak resonance for R < R, nm and V, < V. to a single-
peak resonance at R = R, nmand V, =V, . and back to a
double-peak resonance for R > R, nmand V, > V.. This
is shown in Fig. 3(e) (and its insets) for a trivial QD, but
similar behavior also occurs for a topological QD. In the
Supplemental Material [32] (Sec. X), we show that, when
the bulk- and edge-state Kramers pairs obey &34)(R, V) —
1) (R.V,) = (V3 VI — 1@ /y3@) - two of the
transport channels are completely decoupled from the leads
and hence a single resonance (peaked G = 2¢?/h) emerges.
For the parameters in Fig. 3(e), this decoupling occurs
when the two Kramers pairs (bulk and edge) become
degenerate, i.e., €;(2)(R., V) = €34 (R., V) (inciden-
tally, their protection is lost in this case).

Concluding remarks.—We have predicted that Bi-based
InAs QWs can become room temperature TIs (~30 meV)
for well widths d > 6.9 nm. Our realistic k - p approach
allows us to calculate the parameters of an effective BHZ
model from which we can define cylindrical QDs via
further confinement. By solving the BHZ QD eigenvalue
equation analytically, we find, quite surprisingly, that both
topological and nontopological BHZ QDs feature similar
(i) protected helical edge states, (ii) circulating currents,
and (iii) two-terminal linear conductances G, exhibiting a
two-peak resonance as a function of the QD radius and the
gate V, controlling its energy levels relative to the Fermi
level of the leads. Hence, our proposed cylindrical QDs—
topological and nontopological—are equivalent from the
standpoint of edge-state transport, in contrast with TIs. We
expect that our work will stimulate experimental research
on this topic.
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