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The chiral Majorana fermion is a massless self-conjugate fermionic particle that could arise as the
quasiparticle edge state of a two-dimensonal topological state of matter. Here we propose a new platform
for a chiral topological superconductor (TSC) in two dimensions with multiple N chiral Majorana fermions
from a quantized anomalous Hall insulator in proximity to an s-wave superconductor with nontrivial
band topology. A concrete example is that a N ¼ 3 chiral TSC is realized by coupling a magnetic
topological insulator to the ion-based superconductor such as FeTe0.55Se0.45. We further propose the
electrical and thermal transport experiments to detect the Majorana nature of three chiral edge fermions.
A smoking gun signature is that the two-terminal electrical conductance of a quantized anomalous
Hall-TSC junction obeys a unique distribution averaged to ð2=3Þe2=h, which is due to the random edge
mode mixing of chiral Majorana fermions and is distinguished from possible trivial explanations. The
homogenous system proposed here provides an ideal platform for studying the exotic physics of chiral
Majorana fermions.
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The chiral Majorana fermion, a massless fermionic
particle which is its own antiparticle, could arise as a
one-dimensional quasiparticle edge state of a 2D topologi-
cal states of matter [1–10]. The non-Abelian braiding of
chiral Majorana fermions [11] may be useful in topological
quantum computation [12,13]. A simple example of
hosting a chiral Majorana fermion mode (CMFM) is the
px þ ipy chiral topological superconductor (TSC) with a
Bogoliubov–de Gennes (BdG) Chern number N ¼ 1,
which can be realized from a quantum anomalous Hall
(QAH) plateau transition in proximity to a conventional
s-wave superconductor [14–16], and can be driven by an
external magnetic field or electric field in magnetic
topological insulators (MTIs) [17–21]. The single
CMFM backscattering in a QAH-TSC-QAH (QTQ) junc-
tion is predicted to exhibit a half quantized conductance
plateau [15,16,22], which has been recently observed in a
CrxðBi; SbÞ2−xTe3 (CBST) thin film QAH system in
proximity with a Nb superconductor [17]. The magnetic
field at coercivity inevitably introduces random domains,
making MTIs strongly disordered in experiments [23]. The
single CMFM in this system is robust against disorder [24].
However, alternative explanations of the half plateau with-
out CMFM under strong disorders have been proposed
[25,26], which arises from incoherence due to disorder.
Therefore, a homogenous system hosting CMFM and the
decisive transport signature are highly desired.
In this Letter, we propose a new platform for an odd

Chern number N chiral TSC, which supports multiple
CMFMs. The random edge mode mixing of CMFMs leads

to a unique conductance distribution averaged to ð2=3Þe2=h
in the QTQ junction, which is the smoking gun signature
of CMFMs. This is in sharp contrast to the previous
proposal that chiral TSC is achieved near the QAH plateau
transition [14,16], where strong disorders accompany in
the system. Here the system is homogenous, which pro-
vides an ideal platform for studying the exotic physics
of CMFMs.
Model.—The basic mechanism for 2D chiral TSC is to

introduce s-wave superconductivity (s-SC) and ferromag-
netism (FM) into a strong spin-orbit coupled (SOC) system,
such as the spin-helical surface states (SSs) of TIs [27,28].
Instead of inducing superconductivity into a MTI for chiral
TSC, one can introduce the FM proximity effect into
superconducting Dirac SSs, where the CMFM exists at
the boundary between FM and a superconductor [29]. The
latter one is more practical for a homogenous system, since
FM exchange coupling is usually much larger than s-SC
proximity. Therefore, it is natural to ask whether exotic
topological states exist in the heterostructure of MTI and an
s-SC with nontrivial band topology (dubbed as topological
s-SC (Ts-SC)), as shown in Fig. 1(a). The Ts-SC has a fully
bulk pairing gap and an s-SC gap on the single spin-helical
Dirac SS. The prototype Ts-SC materials are the ion-based
superconductors such as FeTe0.55Se0.45 (FTS) [30]. The
general theory presented here for chiral TSC is generic for
the higher Chern number QAH insulator [31] and Ts-SC.
We would like to start with a simple model describing the
C ¼ 1 QAH in MTIs [32] for concreteness. The low energy
physics of the heterostructure is described by four Dirac
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SSs only, for the bulk states in MTI and Ts-SC are gapped.
The generic form of the 2D effective Hamiltonian without
superconducting proximity effect is

HðkÞ ¼
�
H1 V

V† H2

�
: ð1Þ

Here, H1 describes the Ts-SC SSs with proximity effect
from MTI, the bulk metallic states in Ts-SC are neglected
since they are gapped with superconducting pairing, and
H2 describes the QAH in MTI film,

H1 ¼ v1kyσ1τ3 − v1kxσ2τ3 þ
λ1
2
σ3ð1 − τ3Þ þ 2δ;

H2 ¼ v2kyσ1τ3 − v2kxσ2τ3 þmðkÞτ1 þ λ2σ3; ð2Þ

with the basis of φi
k ¼ ðcti↑; cti↓; cbi↑; cbi↓ÞT , (i ¼ 1, 2),

where t and b denote the top and bottom SSs and ↑ and ↓
represent spin up and down states, respectively. σj and τj
(j ¼ 1, 2, 3) are Pauli matrices acting on spin and layer,
respectively. vi is Fermi velocity, which have opposite signs
in FTS and MTI [30,33,34]. (The relative sign of velocities
do not affect the results). λi is an FM exchange field along
the z axis that can be tuned by a magnetic field. The short-
range FM proximity effect only affects the bottom SS of
Ts-SC and λ1 ≤ λ2. mðkÞ ¼ m0 þm1jkj2 is the hybridiza-
tion between the top and bottom SSs in MTI. jλ2j > jm0j
guarantees a QAH state in MTI. 2δ is the energy band
alignment between two Dirac cones. For simplicity, we set
v2 ¼ −v1 ≡ v, λ1 ¼ λ2 ≡ λ, and neglect the inversion
symmetry breaking in each material. V ¼ gτ− is the
hybridization between the bottom Ts-SC and the top
MTI surfaces at interface, where τ− ¼ ðτ1 − iτ2Þ=2, g is
the real constant.
With superconducting proximity effect, a finite pairing

amplitude is induced in MTI and Ts-SC SSs. The BdG
Hamiltonian becomes HBdG ¼ ð1=2ÞPkΨ

†
kHBdGðkÞΨk,

with Ψk ¼ ðψT
k;ψ

†
−kÞT , ψk ¼ ðφ1

k;φ
2
kÞ, and

HBdGðkÞ ¼
�
HðkÞ − μ ΔðkÞ
Δ†ðkÞ −H�ð−kÞ þ μ

�
;

ΔðkÞ ¼
�Δ1ðkÞ 0

0 Δ2ðkÞ

�
; ð3Þ

Here μ is the chemical potential relative to the Dirac cone in
MTI, Δ1ðkÞ ¼ iΔ1σ2, and Δ2ðkÞ ¼ iðΔt

2=2Þσ2ð1þ ζ3Þ þ
iðΔb

2=2Þσ2ð1 − ζ3Þ with ζ3 as the Pauli matrix in Nambu
space. Δ1, Δt

2, and Δb
2 are the pairing gap functions in SSs

of Ts-SC, top, and bottom MTI. All Δi are chosen as k
independent, since they are induced by the s-SC proximity
effect, e.g., from the bulk hole pocket at Γ point in an FTS.
Usually Δ1 ≥ Δt

2 ≫ Δb
2. Here we set Δ1 ¼ Δt

2 ≡ Δ and
Δb

2 ¼ 0, which is realistic in a superconducting proximity
effect between Bi2Te3 thin film and FTS with short
coherence length [35].
Phase diagram.—The BdG Hamiltonian in Eq. (3) can

be classified by the Chern number N. Since the topological
invariants cannot change without closing the bulk gap,
the phase diagram can be determined by first finding the
phase boundaries as gapless regions in parameter spaces,
and then calculate N of the gapped phases. We first
consider the phase diagram in the limit g ¼ 0, in which
case the system is decoupled into two BdG models HBdG

1

and HBdG
2 ,

HBdG
i ¼

�
HiðkÞ − μ ΔiðkÞ
Δ†

i ðkÞ −H�
i ð−kÞ þ μ

�
: ð4Þ

Here HBdG
1 is the superconducting Dirac SSs of Ts-SC

with only the bottom SS in proximity to FM. The top and
bottom SSs in Ts-SC are further decoupled. The energy
spectrum of the top SS is E1;t

k ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�vjkj−μ0Þ2þΔ2

p
, and

μ0¼μ−2δ, which resembles that of the spinless pxþipy

superconductor but respects time-reversal symmetry [5].
The excitation spectrum of the bottom SS is E1;b

k ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ λ2 þ μ02 þ v2jkj2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðΔ2 þ μ02Þ þ μ02v2jkj2

pq
,

with the gap closing point at k ¼ 0 and λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ02

p
.

For jλj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ02

p
, the bottom SS is adiabatically con-

nected to the top SS in the λ ¼ 0 limit, so they are
topologically equivalent. Therefore, the whole Ts-SC SS
possesses nontrivial topology, but there is no chiral edge
state, since there is no geometric edge to the 2D surface
of a 3D bulk. For jλj >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ02

p
, the bottom SS is

adiabatically connected to FM with Δ ¼ μ0 ¼ 0, which is
topologically trivial, so there exists a single CMFM at the
edge domain boundary at Ts-SC bottom, and N1 ¼ sgnðλÞ
is the sign of λ. HBdG

2 is the superconducting proximity
coupled QAH insulator, which has been studied in
Ref. [16]. For μ ¼ 0, N2 ¼ 0; for jλj < λ−c (which vanishes
when m0 ¼ 0), N2 ¼ sgnðλÞ; for λ−c < jλj < λþc , and

Ts-SC

QAH

QAH TSC QAH1 2

34 5

6 7
A B

CD

2γ

1γ

3γ

a

b

'a

'b
(a) (b)

FIG. 1. (a) The heterostructure for chiral TSC with an odd
number of CMFMs consists of QAH inMTIs and a Ts-SC on top.
Take C ¼ 1 QAH e.g., a N ¼ 3 TSC is realized when the
exchange field is large enough. When QAH has a higher Chern
number, a higher odd number N TSC may be realized. (b) The
transport configuration of a QTQ (N-N0-N ¼ 2-3-2) junction
device. The arrows on the edge represent CMFMs.
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N2¼2sgnðλÞ for jλj>λþc . Here λ�c ¼ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0þΔ2
p

�ΔÞ=2.
A finite μ enlarges the odd N2 TSC phase. The total Chern
number of the heterostructure without V is N ¼ N1 þ N2.
The phase diagram with parameters ðμ; λÞ is shown in
Fig. 2(a), where different chiral TSC phases are denoted by
the corresponding Chern numbers.
Next, we study the effect of V at interface. Similar to the

g ¼ 0 case, we determine the phase boundaries by gapless
regions inEq. (3), which is always atk ¼ 0 point. Therefore,
any k-dependent pairing [36,37] will not affect the phase
diagrams.As show in Fig. 2(b), when the g term is turned on,
it makes the chiral TSC phasewith the same Chern numbers
simply connected. Meanwhile, it shrinks the N ¼ 0 phase
and enlarges the N ¼ 1 phase, and further pushes the phase
boundary betweenN ¼ 2 andN ¼ 3 towards a larger λ. For
a given exchange field, μ will drive the system into TSC
phases with smaller N. Therefore, one optimal condition
for N ¼ 3 TSC is μ ¼ 0, which corresponds to an undoped
QAH system. This is just the opposite to the optimal
condition μ ≠ 0 for obtaining the N ¼ 1 TSC phase from
QAH plateau transition [16]. As shown in Fig. 2(c), g
enlarges the N ¼ 1 phase and shrinks all other N phases.
This can be understood from the band crossing at the
interface. The single-particle Hamiltonian at the interface
is Hint ¼ vkyσ1 − vkxσ2 þ λσ3 þ gτ1 þ δð1þ τ3Þ, with the
energy spectrum Eint ¼ δ� ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ δ2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ vjkj2

p
Þ. g

splits the two copies of Dirac bands up and down in energy.
Whenever the Dirac band edge crosses the chemical poten-
tial,N reduces by one. As shown in Fig. 2(d), δ enlarges the
trivial even N TSC, and shrinks the nontrivial odd N TSC
towards larger λ. Similarly, m0 enlarges N ¼ 0 TSC and
shrinks N ≠ 0 TSC. Thus m0 ¼ δ ¼ 0 is preferred for a
higher N TSC. For a simple case m0 ¼ δ ¼ 0 and infini-
tesimal Δ, a simple sum rule for the Chern number of the
heterostucture is

N ¼ N2 þ sgnðjλj − jgjÞN1: ð5Þ

In general, the coupling g will strongly modify the Chern
number of the heterostructure from that of the decoupled
systems. The chiral TSC with higher odd Chern numbers
requires a large enough exchange field, and is simply
obtained by growing the multilayer heterostructure or by
using a higher Chern number QAH following the above
recipe.
Transport.—To probe the multiple neutral CMFMs, we

consider the electrical and thermal transports in an N ¼ 3
chiral TSC. The Hall bar device we shall discuss is a QTQ
junction as shown in Fig. 1(b), which has been studied for
N ¼ 1 and N ¼ 2 chiral TSCs. Both the left and right QAH
regions have a Chern number C ¼ 1, and thus have a
charged chiral fermion mode on their edges with a vacuum.
The charge chiral fermion mode can be equivalently written
as two CMFMs, γ1 and γ2, as shown in Fig. 1(b), and the
electron annihilation operators a; a0; b; b0 on the left (right)
bottom (top) QAH edges are locally related to the CMFMs
as a; a0; b; b0 ¼ γ1 þ iγ2. There exists a third CMFM γ3 on
the vertical edges between C ¼ 1 QAH and N ¼ 3 TSC,
which merges with γ1 and γ2 on the top and bottom
TSC edges.
We assume the current is only applied at terminals 1, 2,

and 3, while terminals 4 to 7 are only used as voltage leads.
The lead on electrode 3 is connected to the TSC bulk, while
all the other leads are on the edge. The electrical transport
of the superconducting junction is governed by the gen-
eralized Landauer-Büttiker formula [15,16,38,39], which
takes the form among leads 1–3 as

I1 ¼
e2

h
½ð1 − rþ rAÞðV1 − VsÞ þ ðt − tAÞðVs − V2Þ�;

I2 ¼
e2

h
½ð1 − rþ rAÞðV2 − VsÞ þ ðt − tAÞðVs − V1Þ�;

I3 ¼ −I1 − I2; V3 ¼ Vs; ð6Þ

where Ii and Vi are the inflow current and voltage of lead i,
Vs is the voltage of the TSC, and we have assumed the
contact resistance vanishes between lead 3 and the TSC
bulk, which is appropriate when the electrodes are good
metals. Here r; rA; t, and tA are the normal reflection,
Andreev reflection, normal transmission, and Andreev
transmission probabilities between leads 1 and 2, respec-
tively, satisfying rþ rA þ tþ tA ¼ 1.
To examine the normal and Andreev probabilities,

consider the charged chiral fermion mode a ¼ γ1 þ iγ2
incident from lead 1. When propagating on the bottom TSC
edge A–B, it could randomly mix with γ3 due to unavoid-
able edge disorders. Therefore, when the incident charge
mode a reaches corner B, it has the normal and Andreev
probabilities t1 and tA1 to become a0 and a0†, but also has a
remaining probability pð1Þ ¼ 1 − t1 − tA1 to propagate as γ3.

(a) (c)

(d)
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δ
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FIG. 2. Phase diagram of the heterostructure with typical
parameters. (a) g¼0, δ ¼ 0. (b) g ¼ 0.3, δ ¼ 0. (c) μ ¼ δ ¼ 0.
The even N ¼ 0, 2 phases disappear when m0 ¼ 0 and the phase
boundary between N ¼ 1 and N ¼ 3 is g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − Δ2

p
. (d) μ ¼ 0,

δ ¼ −0.1. All other parameters v ¼ 1, Δ ¼ 0.1, m0 ¼ 0.2.
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The γ3 mode will then circulate along the TSC edge, and
has a propagation probability into charge modes b0, b0† (or
a0, a0†) whenever it reaches corner D (or B), thus contrib-
uting probabilities rn and rAn (or tn and tAn ) during its nth lap.
Summing over n then yields the total r; rA; t, and tA. Such a
summation is difficult. However, since γ3 is charge neutral,
its propagation probability into electron and hole states will
always be equal, so we conclude that rn ¼ rAn for any n, and
tn ¼ tAn for all n≥2. Therefore, we find t−tA¼ t1−tA1 , and
r − rA ¼ 0, which are the only quantities needed in Eq. (6).
Quite different from the interference [29,40–43], here we
assume that the system size is large, so that the CMFMs
lose coherence during their propagations.
Next we calculate t1 − tA1 . The chemical potential,

hopping, and pairing on TSC edge A–B yields a term
HR ¼ iγTLðxÞγ in the Hamiltonian, where γ ¼ ðγ1; γ2; γ3ÞT
is the CMFM basis, and LðxÞ is a 3 × 3 real antisymmetric
matrix. In terms of the SO(3) group generators T ¼
ðT1; T2; T3Þ, one can rewrite it as L ¼ iωn · T, where
jnj ¼ 1. For a given edge, one expects ω ¼ hωi þ δωðxÞ
and n ¼ hni þ δnðxÞ to fluctuate, where we assume the
fluctuations jδnðxÞj ≪ jhnij. This leads to a SO(3) trans-
formation Q ≈ eiϕhniT of γ, where ϕ ≈

R
B
A ωðxÞdx=vM is

uniformly random in ½0; 2πÞ when edge A–B is longer than
the dephasing length (due to thermal noise, etc.), and vM is
the average Majorana velocity [44–46]. The Majorana
velocity anisotropy leads a deviation of Q away from
SO(3) [22], but the deviation is irrelevant in long distances
[47,48]. The average normal and Andreev transmissions
along the edge are thus the mean value over ϕ:

t1 ¼ ju†Quj2; tA1 ¼ juTQuj2; ð7Þ

where u ¼ ð1; i; 0ÞT= ffiffiffi
2

p
is the electron annihilation

operator under the Majorana basis. The result gives
t1 − tA1 ¼ cos2 θ, where θ is the angle between hni and
the γ3 axis (see the Supplemental Material [47]). By
defining σ12 ¼ I=ðV1 − V2Þ for the current I ¼ I1 ¼ −I2
applied between leads 1 and 2 (I3 ¼ 0), and σ13 ¼
I=ðV1 − V3Þ for the current I ¼ I1 ¼ −I3 applied at leads
1 and 3 (I2 ¼ 0), we obtain σ12 ¼ ð1þ cos2 θÞ=2 and
σ13 ¼ 1 − cos4 θ in units of e2=h. Note that hni depends on
samples and physical conditions, so if we assume that hni
distributes uniformly on the unit sphere S2, we obtain the
probability distributions of σ12 and σ13 among various
samples or physical conditions

pðσ12Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ12 − 1
p ; pðσ13Þ ¼

1

4ð1 − σ13Þ3=4
; ð8Þ

where σ12 ∈ ½1
2
; 1� and σ13 ∈ ½0; 1� in units of e2=h. The

average values of σ12 and σ13 can then be derived to be
σ̄12 ¼ ð2=3Þe2=h and σ̄13 ¼ ð4=5Þe2=h. Moreover, if the
TSC edge is in the strong fluctuation limit jδnðxÞj ≫ jhnij

(induced by strong static disorders, etc.), we would have
t ¼ tA, leading to quantized conductances σ12 ¼ e2=2h and
σ13 ¼ e2=h [47]. For disorders that affect both bulk and
edge, the bulk may undergo disorder-driven phase tran-
sitions before the edge disorder reaches the strong limit, in
which case the strong limit results here will not be reached.
In addition, the resistancematrixmeasured fromother leads

are R12;46¼R12;57¼h=e2, and R12;45¼R12;67¼σ−112 −h=e2,
where Rij;kl ≡ ðVk − VlÞ=I with the current I applied
between leads i and j [47].
The exchange field can be tuned by either a

perpendicular or an in-plane external magnetic field.
Therefore, the TSC phases will experience the BdG
Chern number variation N ¼ 3 → 2 → 1 → 0 → −1 →
−2 → −3 as λ decreases in the hysteresis loop.
Meanwhile, the QAH phase will experience the Chern
number change C ¼ 1 → 0 → −1, and in terms of
N ¼ 2 → 0 → −2. In general, the average σ̄12 will exhibit
the plateau transition as shown in Fig. 3(a). Since the
system in the magnetized state without external magnetic
fields is homogenous in the sense of weak disorder without
percolation transition, the unique 2=3 quantized average
conductance plateau manifests the N ¼ 3 TSC.
Finally, we discuss the thermal transport. The N ¼ 3

chiral TSC exhibits a quantized thermal Hall conductance
κxy=T ¼ 3 in units of κ0 ¼ ðπ2=6Þðk2B=hÞ, with kB (the
Boltzmann constant) and T (temperature). Moreover, the
QTQ junction will exhibit quantized thermal resistances
resembling the electric resistances of a filling factor 2-3-2
integer quantum Hall junction [49,50]. For a heat current
applied between leads 1 and 2, the thermal resistances are
given by RQ

12;46 ¼ RQ
12;57 ¼ 1=2, and RQ

12;45 ¼ RQ
12;67 ¼ 1=6

in units of 1=ðκ0TÞ. Here the full thermal equilibration
among the CMFMs is assumed. The phonon and magnon
contributions can be eliminated from the temperature
dependence [51].
We discuss the experimental feasibility of the proposed

state. The key point is to invert the bands by a large
exchange field, while keeping the QAH insulating. The
hybridization between top and bottom SSs in QAH is better
to be small. For QAH in MTIs, λ ≈ 30 meV in CBST [52],
and λ ≈ 50 meV in V-I codoped-TI [53].m0 vanishes when

0

1 2

2 3

1

12σ 2( )e h

0 H

0

1

0 H

4 5

13σ(a) (b)2( )e h

FIG. 3. (a) The average value σ̄12 generically shows a plateau
transition 2=3 → 1 → 1=2 → 0 → 1=2 → 1 → 2=3 in units of
e2=h during the hysteresis loop. (b) The average value σ̄13 shows
4=5 and 1 peaks for jNj ¼ 3 and jNj ¼ 1 TSC phases, respec-
tively. Here only one cycle of hysteresis loop is shown.
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film thickness exceeds five quintuple layers. For Ts-SC in
FTS, Δ ¼ 2 meV and μ ¼ 5 meV below Tc ¼ 14.5 K
[30]. The work functions in FTS and ðBi; SbÞ2Te3 thin
film grown on SrTiO3 are almost the same as about
4.3� 0.1 eV; thus δ can be tuned to be small [54]. g is
unknown, but can be tuned by inserting an insulating
ultrathin layer such as CdSe between Ts-SC and QAH.
Other possible Ts-SC materials include an ion-based
superconductor such as BaFe2As2 and LiFeAs [55], and
the superconducting doped TIs such as CuxBi2Se3 and
TlxBi2Te3 [56–58]. Recently, the QAH with higher Chern
numbers has been realized in a multilayer of MTI [59].
Such experimental progress on the material growth and rich
material choice of MTI and Ts-SC makes the realization of
the higher odd N chiral TSC feasible.
In summary, the random mode mixing of CMFMs leads

to unique quantum transport, which can be served as a
smoking gun signature of the Majorana nature of chiral
edge fermions. The coherent mixing of the CMFMs leads
to nontrivial interference effect and may find applications
in topological quantum computation, which is left for
future work.

We thankYang Feng, Xiao Feng, Tong Zhang, and KeHe
for helpful discussions. J. W. is supported by the Natural
Science Foundation of China through Grant No. 11774065;
the National Key Research Program of China under
Grant No. 2016YFA0300703; the Natural Science
Foundation of Shanghai under Grant No. 17ZR1442500;
the National Thousand-Young-Talents Program; the Open
Research Fund Program of the State Key Laboratory of
Low-Dimensional Quantum Physics through Contract
No. KF201606; and by Fudan University Initiative
Scientific Research Program. B. L. is supported by the
Princeton Center for Theoretical Science at Princeton
University.

*wjingphys@fudan.edu.cn
†biao@princeton.edu

[1] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[2] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[3] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657

(2003).
[4] A. Kitaev, Ann. Phys. (Amsterdam) 321, 2 (2006).
[5] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[6] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. D. Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[7] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[8] X.-L. Qi, T. L. Hughes, S. Raghu, and S.-C. Zhang, Phys.

Rev. Lett. 102, 187001 (2009).
[9] F. Wilczek, Nat. Phys. 5, 614 (2009).

[10] S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137 (2015).
[11] B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, and S.-C. Zhang,

Proc. Natl. Acad. Sci. U.S.A. 115, 10938 (2018).
[12] A. Kitaev, Ann. Phys. (Amsterdam) 303, 2 (2003).

[13] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D.
Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[14] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 82,
184516 (2010).

[15] S. B. Chung, X.-L. Qi, J. Maciejko, and S.-C. Zhang, Phys.
Rev. B 83, 100512 (2011).

[16] J. Wang, Q. Zhou, B. Lian, and S.-C. Zhang, Phys. Rev. B
92, 064520 (2015).

[17] Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J.
Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z.
Chen, T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia,
and K. L. Wang, Science 357, 294 (2017).

[18] J. Wang, B. Lian, and S.-C. Zhang, Phys. Rev. B 89, 085106
(2014).

[19] X. Kou, L. Pan, J. Wang, Y. Fan, E. S. Choi, W.-L. Lee, T.
Nie, K. Murata, Q. Shao, S.-C. Zhang, and K. L. Wang, Nat.
Commun. 6, 8474 (2015).

[20] Y. Feng, X. Feng, Y. Ou, J. Wang, C. Liu, L. Zhang, D.
Zhao, G. Jiang, S.-C. Zhang, K. He, X. Ma, Q.-K. Xue, and
Y. Wang, Phys. Rev. Lett. 115, 126801 (2015).

[21] J. Wang, Phys. Rev. B 94, 214502 (2016).
[22] B. Lian, J. Wang, and S.-C. Zhang, Phys. Rev. B 93, 161401

(2016).
[23] K. Yasuda, M. Mogi, R. Yoshimi, A. Tsukazaki, K. S.

Takahashi, M. Kawasaki, F. Kagawa, and Y. Tokura,
Science 358, 1311 (2017).

[24] B. Lian, J. Wang, X.-Q. Sun, A. Vaezi, and S.-C. Zhang,
Phys. Rev. B 97, 125408 (2018).

[25] W. Ji and X.-G. Wen, Phys. Rev. Lett. 120, 107002 (2018).
[26] Y. Huang, F. Setiawan, and J. D. Sau, Phys. Rev. B 97,

100501 (2018).
[27] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[28] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[29] L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403

(2009).
[30] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K.

Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin,
Science 360, 182 (2018).

[31] J. Wang, B. Lian, H. Zhang, Y. Xu, and S.-C. Zhang, Phys.
Rev. Lett. 111, 136801 (2013).

[32] C.-Z. Chang et al., Science 340, 167 (2013).
[33] Z. Wang, P. Zhang, G. Xu, L. K. Zeng, H. Miao, X. Xu, T.

Qian, H. Weng, P. Richard, A. V. Fedorov, H. Ding, X. Dai,
and Z. Fang, Phys. Rev. B 92, 115119 (2015).

[34] X. Wu, S. Qin, Y. Liang, H. Fan, and J. Hu, Phys. Rev. B 93,
115129 (2016).

[35] M. Chen, X. Chen, H. Yang, Z. Du, and H.-H. Wen, Sci.
Adv. 4, eaat1084 (2018).

[36] A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B 88,
104514 (2013).

[37] Z. Faraei and S. A. Jafari, Phys. Rev. B 96, 134516 (2017).
[38] M. P. Anantram and S. Datta, Phys. Rev. B 53, 16390

(1996).
[39] O. Entin-Wohlman, Y. Imry, and A. Aharony, Phys. Rev. B

78, 224510 (2008).
[40] G. Strübi, W. Belzig, M.-S. Choi, and C. Bruder, Phys. Rev.

Lett. 107, 136403 (2011).
[41] Y.-H. Li, J. Liu, H. Liu, H. Jiang, Q.-F. Sun, and X. C. Xie,

Phys. Rev. B 98, 045141 (2018).

PHYSICAL REVIEW LETTERS 121, 256801 (2018)

256801-5

https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1103/PhysRevLett.102.187001
https://doi.org/10.1038/nphys1380
https://doi.org/10.1103/RevModPhys.87.137
https://doi.org/10.1073/pnas.1810003115
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.83.100512
https://doi.org/10.1103/PhysRevB.83.100512
https://doi.org/10.1103/PhysRevB.92.064520
https://doi.org/10.1103/PhysRevB.92.064520
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1103/PhysRevB.89.085106
https://doi.org/10.1103/PhysRevB.89.085106
https://doi.org/10.1038/ncomms9474
https://doi.org/10.1038/ncomms9474
https://doi.org/10.1103/PhysRevLett.115.126801
https://doi.org/10.1103/PhysRevB.94.214502
https://doi.org/10.1103/PhysRevB.93.161401
https://doi.org/10.1103/PhysRevB.93.161401
https://doi.org/10.1126/science.aan5991
https://doi.org/10.1103/PhysRevB.97.125408
https://doi.org/10.1103/PhysRevLett.120.107002
https://doi.org/10.1103/PhysRevB.97.100501
https://doi.org/10.1103/PhysRevB.97.100501
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.102.216403
https://doi.org/10.1103/PhysRevLett.102.216403
https://doi.org/10.1126/science.aan4596
https://doi.org/10.1103/PhysRevLett.111.136801
https://doi.org/10.1103/PhysRevLett.111.136801
https://doi.org/10.1126/science.1234414
https://doi.org/10.1103/PhysRevB.92.115119
https://doi.org/10.1103/PhysRevB.93.115129
https://doi.org/10.1103/PhysRevB.93.115129
https://doi.org/10.1126/sciadv.aat1084
https://doi.org/10.1126/sciadv.aat1084
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.88.104514
https://doi.org/10.1103/PhysRevB.96.134516
https://doi.org/10.1103/PhysRevB.53.16390
https://doi.org/10.1103/PhysRevB.53.16390
https://doi.org/10.1103/PhysRevB.78.224510
https://doi.org/10.1103/PhysRevB.78.224510
https://doi.org/10.1103/PhysRevLett.107.136403
https://doi.org/10.1103/PhysRevLett.107.136403
https://doi.org/10.1103/PhysRevB.98.045141


[42] A. R. Akhmerov, J. Nilsson, and C.W. J. Beenakker, Phys.
Rev. Lett. 102, 216404 (2009).

[43] K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103,
237001 (2009).

[44] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett.
99, 236806 (2007).

[45] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.
Lett. 99, 236807 (2007).

[46] B. Lian and J. Wang, Phys. Rev. B 97, 165124 (2018).
[47] See SupplementalMaterial at http://link.aps.org/supplemental/

10.1103/PhysRevLett.121.256801 for technical details.
[48] B. Lian and J. Wang, arXiv:1807.03943.
[49] J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317,

638 (2007).
[50] B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin,

L. S. Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804
(2007).

[51] M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E.
Feldman, A. Stern, and V. Umansky, Nature (London) 545,
75 (2017).

[52] I. Lee, C. K. Kim, J. Lee, S. J. L. Billinge, R. Zhong, J. A.
Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu, and
J. C. S. Davis, Proc. Natl. Acad. Sci. U.S.A. 112, 1316
(2015).

[53] S. Qi, Z. Qiao, X. Deng, E. D. Cubuk, H. Chen, W. Zhu, E.
Kaxiras, S. B. Zhang, X. Xu, and Z. Zhang, Phys. Rev. Lett.
117, 056804 (2016).

[54] Y. Feng (private communication).
[55] P. Zhang et al., Nat. Phys., DOI: 10.1038/s41567-018-0280-

z (2018).
[56] Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J.

Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N. P. Ong, and
R. J. Cava, Phys. Rev. Lett. 104, 057001 (2010).

[57] L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).
[58] Z. Wang, A. A. Taskin, T. Frlich, M. Braden, and Y. Ando,

Chem. Mater. 28, 779 (2016).
[59] G. Jiang, Y. Feng, W. Wu, S. Li, Y. Bai, Y. Li, Q. Zhang, L.

Gu, X. Feng, D. Zhang, C. Song, L. Wang, W. Li, X.-C. Ma,
Q.-K. Xue, Y. Wang, and K. He, Chin. Phys. Lett. 35,
076802 (2018).

PHYSICAL REVIEW LETTERS 121, 256801 (2018)

256801-6

https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1103/PhysRevLett.103.237001
https://doi.org/10.1103/PhysRevLett.99.236806
https://doi.org/10.1103/PhysRevLett.99.236806
https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1103/PhysRevB.97.165124
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.256801
http://arXiv.org/abs/1807.03943
https://doi.org/10.1126/science.1144657
https://doi.org/10.1126/science.1144657
https://doi.org/10.1103/PhysRevLett.99.166804
https://doi.org/10.1103/PhysRevLett.99.166804
https://doi.org/10.1038/nature22052
https://doi.org/10.1038/nature22052
https://doi.org/10.1073/pnas.1424322112
https://doi.org/10.1073/pnas.1424322112
https://doi.org/10.1103/PhysRevLett.117.056804
https://doi.org/10.1103/PhysRevLett.117.056804
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1103/PhysRevLett.104.057001
https://doi.org/10.1103/PhysRevLett.105.097001
https://doi.org/10.1021/acs.chemmater.5b03727
https://doi.org/10.1088/0256-307X/35/7/076802
https://doi.org/10.1088/0256-307X/35/7/076802

