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A consistent small-scale description of plasticity and dislocation motion in a crystalline solid is
presented based on the phase field crystal description. By allowing for independent mass motion and lattice
distortion, the crystal can maintain elastic equilibrium on the timescale of plastic motion. We show that the
singular (incompatible) strains are determined by the phase field crystal density, while the smooth
distortions are constrained to satisfy elastic equilibrium. A numerical implementation of the model is
presented and used to study a benchmark problem: the motion of an edge dislocation dipole in a triangular
lattice. The time dependence of the dipole separation agrees with continuum elasticity with no adjustable
parameters.
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The plasticity of small-scale crystals under load is
characterized by intermittent strain bursts and dislocation
avalanches [1–7]. This complex response with scale-free
fluctuations lies squarely outside of classical continuum
plasticity theory, which assumes coarse-grained volumes
containing many defects and hence is valid on macroscopic
scales. More recent continuum plasticity theories [8–17]
are developed at nanoscale, as new state-of-art experiments
provide high-resolution imaging of crystal defects and their
evolution [18,19]. These theoretical developments focus,
however, on the individual dislocation motion rather their
collective effects and the scale-free phenomena in crystal
plasticity. Analogies with nonequilibrium critical phenom-
ena, like depinning transition [20] and jamming transition
[5], have been proposed, yet not convincingly. Some
statistical properties of interacting lattice defects can be
reproduced by discrete dislocation dynamics models [4],
which have arbitrary parameters controlling the dislocation
mobility and kinetics. We therefore lack a consistent
theoretical description of collective dislocation dynamics
without ad hoc parameters.
The phase field crystal model (PFC) is a leading con-

tender for the efficient mesoscale modeling of crystalliza-
tion phenomena [9,21] and dislocation motion [6,22–24].
With a diffusive evolution of the PFC density field, the
existing PFC formulations are not adequate models of
small-scale crystal plasticity, when lacking a consistent
separation of timescales between the fast relaxation of the
elastic (smooth) distortions and the slow dynamics of
crystal defects associated with singular distortions. This
was recognized early and resolved by phenomenologically
adding ballistic degrees of freedom propagating the fast
elastic perturbations [22], which is some particular limit of

a hydrodynamic description for colloidal crystals. More
recent studies use the mode expansion of the PFC density
field to impose constraints on the phase evolution of the
periodic modes to ensure elastic equilibrium [25,26]. This
description works for a perfect “soft” crystal near the
critical point and may not generalize nicely to defected
crystals far away from the melting point.
In this Letter, we propose a consistent way of imple-

menting the timescale separation by introducing an inde-
pendent variable related to static elastic distortions. The
elastostatic condition is added to the diffusive evolution of
the PFC density field which, as we have recently shown
[24], is an order parameter for the topological defects as
sources of singular distortions and their dissipative dynam-
ics. As a classic example, the relative glide motion of two
edge dislocations of opposite Burgers vectors under each
other’s stress field is studied in a triangular lattice. In
contrast to a direct solution of the purely diffusive PFC
model, we recover the internal stress fields and dislocation
velocities consistent with elasticity theory. Our method
bridges nicely between atomistic and continuum formula-
tions. It is applicable to both two- and three-dimensional
matter, different crystal symmetries, and a variable quench-
ing depth range, thus being a suitable model to quantita-
tively study complex phenomena in small-scale crystal
plasticity with minimum input parameters.
A continuum theory of plasticity starts from the state-

ment of incompatibility of the deformation gradient tensor

ϵilm∂lwmk ¼ αik; wmk ¼ ∂muk; ð1Þ

where ϵilm is the antisymmetric Levi-Civita tensor, αik is the
dislocation density tensor, and wmk is the distortion tensor
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[27,28] associated with the deformation field uk. The
integral of αik over a surface is the sum of the Burgers
vectors b corresponding to all the n dislocation lines that
pierce the surface

R
S αijdSj ¼

P
nb

n
i . For a given distri-

bution of topological defects, α is fixed, but not the
distortion w. This can be decomposed into a singular
part, the curl of which yields αij, and a smooth strain,
which we denote by uδij. The smooth strain is compatible,
ϵikmϵjln∂kluδmn ¼ 0. Regardless of the state of distortion,
plastic motion is slow on the scale of lattice vibration and
occurs in mechanical equilibrium, as the stress σij adia-
batically follows the instantaneous distribution of disloca-
tions, ∂jσij ¼ 0. Closure generally requires a constitutive
relation involving the stress and the smooth deformation.
These considerations and appropriate boundary conditions
are sufficient to specify the static problem. Dynamically,
over the timescale appropriate for plastic flow, an evolution
equation needs to be introduced for the dislocation density
tensor [8,10,13,29,30]. In field dislocation dynamics the-
ories, its evolution is kinematically related to the velocity of
the dislocation lines, which in turn requires a constitutive
definition in terms of a local free energy and a dissipation
function [31]. The PFC model of defect motion, as
currently formulated [9,12,26,32], can be used to specify
most of the static and dynamic features just described, but
not all, as discussed below.
The PFC density ψðr; tÞ is a physical order parameter

that describes the dimensionless mass density of the
crystalline phase and inherits the lattice periodicity, ψðrÞ ¼
ψ0 þ

P
gAgeig·r, where the sum extends over all reciprocal

lattice vectors g of the lattice, and Ag are the complex
amplitudes for each period mode. A nonconvex free energy
functional for an isothermal system F is introduced so that
its minimizer ψ� has the desired symmetry of the crystalline
phase. Lattice constants appear as parameters. In dimen-
sionless units, we use F ½ψ �¼R

drfðψ ;∇2ψÞ, with
fðψ ;∇2ψÞ¼ðLψÞ2=2þr2ψ2=2þψ4=4, and L ¼ 1þ∇2

[9,14,33]. The only remaining constant parameter r is
the dimensionless distance away from the symmetry break-
ing bifurcation. For r > 0, ψ� ¼ 0 is the only stable
solution. For r < 0, and depending on the conserved spatial
average ψ0, ψ� is periodic with wave number unity in our
dimensionless units, but of various symmetries. For sim-
plicity, we consider a 2D system where the equilibrium
configuration is a triangular phase with lattice constant
a ¼ 4π=

ffiffiffi
3

p
. The Burgers vector density in 2D is

BkðrÞ ¼ α3;kðrÞ; k ¼ 1, 2. Our results, however, can be
readily extended to 3D. The temporal evolution of the PFC
density ψ is diffusive and given by

∂tψðr; tÞ ¼ ∇2
δF

δψðr; tÞ ; ð2Þ

where δ=δψðr; tÞ stands for the variational derivative with
respect to ψ .
For smooth distortions of ψ�, the free energy F suffices

to determine the stress-strain relation [12]. For small
distortions, we define a nonsingular stress σψ [24]

σψij¼hσ̃ψijic; σ̃ψij¼½∂iLψ �∂jψ − ½Lψ �∂ijψþfδij; ð3Þ

with the microscopic stress σ̃ψij given by the local variation
of F with ∂iuj, and h·ic denoting a spatial coarse graining
by convoluting the microscopic stress with a Gaussian with
a width equal to a unit cell. σψij is symmetric and related to
the strain field uij ¼ ð∂iuj þ ∂juiÞ=2 according to linear
elasticity. For the triangular phase under discussion, the
relation is that of isotropic elasticity

σψij ¼ λδijukk þ 2μuij; ð4Þ

with Lamé coefficients λ ¼ μ ¼ 3A2
0 [24]. The quantity A0

is the amplitude of the uniform mode in a multiple scale
amplitude expansion of ψ�.
Following early work on dislocation motion and grain

boundaries in roll patterns [34,35], the PFC theory has been
used to study dislocation [13,32] and grain boundary
motion [36,37]. Strain fields have been explicitly extracted
[38], or imposed to analyze strained film epitaxy [39], and
are considered as the limiting case of phonon degrees of
freedom [26]. More complex properties of defect motion,
such as specification of slip systems, defect mobilities,
and Peierls barriers, are also given by PFC dynamics
[24,40,41], thus opening the door to the study of defect
pinning, bursts, and avalanches. However, while elastic
equilibrium states with a fixed defected configuration can
be found given appropriate boundary conditions, any
nonequilibrium local deformation of ψðr; tÞ propagates
only diffusively according to Eq. (2). The relevant trans-
verse diffusion constant is small and can even vanish [42].
This is not physical for a crystalline solid, as has been
already recognized [22,25,26,32]. In ordinary crystals,
unlike the PFC model, elastic equilibrium compatible with
a transient distribution αikðr; tÞ and boundary conditions is
established quickly, in a timescale determined by damping
of elastic waves in the medium.
To overcome this difficulty, we propose to use the PFC

density ψðr; tÞ only as an indicator function of defect
location and topology, as well as governing local relaxation
near defect cores. The PFC field ψðr; tÞ determines the
source for lattice incompatibility in Eq. (1), the solution of
which is only a particular singular solution for the defor-
mation field. A smooth distortion uδ (in the null space of
the curl) must be added to this particular solution to enforce
elastic equilibrium. At each time, ψðr; tÞ obtained from
Eq. (2) is then distorted ψ 0ðrþ uδÞ ¼ ψðrÞ to ensure elastic
equilibrium. This leads to a defect motion consistent with
the Peach-Koehler force [24]. Plastic motion is uniquely
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specified, with the only constitutive input being the free
energy functional F . We discuss in what follows the details
of our computational implementation and specifically
address the relative motion of a dislocation dipole in a
2D triangular phase.
For obtaining uδ at a given time t, we decompose the

stress field into a singular part σψ arising from ψðr; tÞ and a
small contribution σδ arising from the smooth distortion, so
that σ ¼ σψ þ σδ is in mechanical equilibrium ∇ · σ ¼ 0.
This condition is satisfied by introducing the Airy function
χ, which in 2D reads σij ¼ ϵikϵjl∂klχ. Inverting Eq. (4), we
have in 2D

uij ¼
1

2
ð∂iuj þ ∂juiÞ ¼

1

2μ
ðσij − κδijσkkÞ; ð5Þ

where κ ¼ ðλ=2ðλþ μÞÞ. Inserting Eq. (5) into the incom-
patibility relation in 2D ϵikϵjl∂kluij ¼ ϵij∂iBjðrÞ (e.g.,
[27]) and expressing the stress in terms of the χ function,
we obtain that

1 − κ

2μ
∇4χ ¼ ϵij∂iBjðrÞ; ð6Þ

where BjðrÞ ¼
P

αb
n
jδðr − rnÞ is the dislocation density in

2D for a configuration of dislocations with Burgers vector
bn at locations rn. In Ref. [24], we explicitly computedBðrÞ
through complex demodulation of ψðr; tÞ. Demodulation
yields both the amplitude and phase of the deformation
field: the former going to zero at the defect core, the latter
undergoing a discontinuity across a line that terminates at
the core. Figure 1(a) shows a dislocation dipole in a 2D
triangular lattice, and Fig. 1(d) shows the right-hand side of

Eq. (6) obtained by demodulation. We proceed differently
here and introduce amore efficient numerical procedure that
does not require demodulation. The smooth strain uδij is
compatible (ϵikϵjl∂ijuδkl ¼ 0) and therefore, with Eq. (5), the
corresponding stress satisfies

ϵikϵjl∂ijðσδkl − κδklσ
δ
llÞ ¼ 0: ð7Þ

We now proceed as if the linear decomposition σ ¼ σψ þ σδ

holds everywhere, including near dislocation cores as
defined by ψ. However, the computed stress field σ will
be divergence-free only away from any defect core. Given
this decomposition σδij ¼ ϵikϵjl∂ijχ − σψij, we find an analo-
gous result to Eq. (6),

ð1 − κÞ∇4χ ¼ ðϵikϵjl∂ijσ
ψ
kl − κ∇2σψkkÞ: ð8Þ

Note that the stress σψ from Eq. (3) is smooth and bounded,
so the right-hand side of Eq. (8) can only give a nonsingular
approximation to the singular right-hand side of Eq. (6).
Figure 1(c) shows the right-hand side of Eq. (8) obtained
numerically for the dislocation dipole, which is in good
agreement with Eq. (6) obtained through demodulation
[Fig. 1(d)]. Notice that both methods act as regularizations
of the singular density at defect cores.
Froma givenψðr; tÞ at time t, we compute σψ fromEq. (3)

and then solve Eq. (8) to obtain χ and therefore σ. The
difference σδij ¼ ϵikϵjl∂ijχ − σψij leads to the smooth strain
uδij ¼ ðσδij − νσδkkδijÞ=ð2μÞ, which is, by construction, com-
patible. It can therefore be integrated to obtain a compatible
deformation uδ. The final step in the computation is to
redefine the PFC density as ψ 0ðrþ uδ; tÞ ¼ ψðr; tÞ.
Although the stress-strain relation and stress superposi-

tion only hold far from defect cores, we define the stress of
this newly deformed configuration everywhere as

σij ¼ σψij þ σδij ¼ σψij þ λδijuδkk þ 2μuδij; ð9Þ
which satisfies ∂jσij ¼ 0 only far from defect cores. This is
not a problem because standard diffusive evolution of the
phase field suffices to equilibrate the stress near cores in
time. We discuss this further below and in Fig. 2.
The integration of uδij to obtain u

δ is carried out through a
Helmholtz decomposition into curl- and divergence-free
parts uδi ¼ ∂iV þ ϵij∂jA. Applying the divergence to this
expression, one obtains a Poisson equation for the potential
V, ∂iuδi ¼ uδii ¼ ∇2V, which is easily solved by spectral
methods. On the other hand, taking the curl, we find
ϵij∂iuδj ¼ ϵijϵjk∂ikA ¼ −∇2A, which is a Poisson equation
for A. Unfortunately the source term depends on the
antisymmetric part of the smooth deformation gradient,
which we do not obtain directly from the elastic stress, as
this only depends on the symmetric part. We therefore
apply another Laplacian operator to the equation and use
the compatibility relation ϵij∂ijuδk ¼ 0 to find

FIG. 1. (a) PFC ψ for an initial condition of two dislocations
with opposite Burgers vectors on the same glide plane. Crystal
planes in the [11] and ½1̄1� directions are indicated to illustrate the
structure of the dislocations in the triangular lattice. (b) Coarse-
grained shear stress σψxy. (c) Right-hand side of Eq. (8), divided by
2μ, showing dipolar sources at the dislocation positions. (d) Curl
of the Burgers vector density as computed by demodulation in
Ref. [24], showing excellent agreement with (c).
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∇4A ¼ −ϵij∂ikð∂kuδj þ ∂juδkÞ ¼ −2ϵij∂ikuδjk: ð10Þ
This is a biharmonic equation for A with a known source
term, which is again easily solved by spectral methods.
In particular, if ki are the components of the k vector and
ûδij are the Fourier components of the residual strain, the
Fourier components of the residual deformation can be
expressed as

ûδi ¼ −
iki
k2

ûδjj þ 2iϵijϵrs
kjkrkl
k4

ûδsl; ð11Þ

with the k ¼ 0 component chosen to be zero to avoid rigid
body displacements. We then compute the distorted PFC

density ψ 0ðrÞ ¼ ψðr − uδÞ on the original grid r by
expanding in Taylor series up to fifth order in uδ.
Next, we discuss a benchmark configuration: the relative

motion of two edge dislocations along the same glide plane
[Fig. 1(a)]. The periodic computational domain has 200 ×
200 unit cells with a spatial resolution of a=7 ¼ 4π=7

ffiffiffi
3

p
in

the x direction and 2π=6 in the y direction. The initial
distance between dislocations is 40a, and we consider the
parameters r ¼ −0.2, ψ0 ¼ 0.265. We prepare the initial
condition of ψðr; t ¼ 0Þ in the one-mode approximation
and seeded with a dislocation dipole [24] and construct the
distorted PFC density ψ 0ðr; 0Þ ¼ ψðr − uδ; 0Þ using Taylor
expansion. We then solve Eq. (2) using an exponential-time
differencing method with a time step of Δt ¼ 0.1 [43].
For the PFC dynamics with mechanical equilibrium, we
compute the distorted PFC density between each time step.
In the purely diffusive PFC, dislocations drift away from
the centerline in the climb direction before approaching
each other to annihilate. This is suppressed under elastic
equilibrium. Figures 2(a) and 2(b) show σψ along a line
going through the rightmost dislocation located at r2 at time
t ¼ 3600 obtained by direct integration of Eq. (2). This is
compared to our model at t ¼ 779, corresponding to a
similar dipole size. In linear elasticity theory for an infinite,
isotropic medium, the shear stress of a dipole is

σxy ¼
2μðλþ μÞ
λþ 2μ

X

n

bnx
2π

cosϕn cosð2ϕnÞ
jr − rnj

; ð12Þ

whereϕn is the azimuth relative to dislocation n, andwe also
compare with this expression. Divergences in Eq. (12) are
regularized by ψ, and the stress near the cores is relatively
well described by σψ, irrespective of whether the smooth
distortion (11) is applied between time steps. Far from the
cores, however, the two stresses show qualitatively different
asymptotic dependence. The dot-dashed lines in Figs. 2(a)
and 2(b) show the stress in a configuration in which the
smooth distortion (11) has been applied between time steps.
The stress is still regularized near defect cores, yet agrees
with linear elasticity in the far field. Figure 2(c) shows the
dependence of the dislocation velocity on the dipole
separation as given by direct integration of Eq. (2) and by
our model with imposed elastic equilibrium. For reference,
we also show the expected result from linear elasticity by
using the Peach-Koehler force with stress (12) and mobility
derived from F [Eq. (45) in Ref. [24] ]. There are no
adjustable parameters in the calculation of the analytic
velocity. The two dislocations move towards each other
until they annihilate, with a velocity inversely proportional
to their separation.Ourmodel captures this result well, while
the direct integration approach shows significant qualitative
deviation form the expected behavior.
To summarize, we have argued that the PFC model lacks

deformation as an independent variable and, as a conse-
quence, fails to maintain proper mechanical equilibrium

FIG. 2. (a) Shear stress σψxy along the horizontal centerline of the
rightmost dislocation core from direct integration of Eq. (2)
(dashed line) compared with our model (dot-dashed line) and
Eq. (12) (solid line). (b) Shear stress as a function of the distance
from the rightmost dislocation located at x2 [marked in (a)],
showing that the equilibrated stress follows linear elasticity from
Eq. (12) in the far field. (c) Dislocation velocity as a function of
dipole separation r12 ¼ jr1 − r2j in the two models. Velocities are
obtained from locating the zeros of the complex amplitudes of ψ
as described in Ref. [24]. The analytic result follows from the
Peach-Kohler force with stress given by Eq. (12) and mobility
computed from F as given in [24]. There are no adjustable
parameters in this calculation.
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during plastic motion. We retain the model because it
provides for lattice and topological defect structures as
derived properties from the phenomenological free energy.
It also allows regularization of defect cores and singular
stresses. PFC dynamics is also consistent with the classical
Peach-Koehler force, with mobility that is again specified
by the free energy F. We take the view, however, that the
PFC is not adequate to describe the distortion of the lattice
away from moving defect cores, and hence supplement it
with a smooth distortion field, compatible with the topo-
logical content of the ψ , but defined so as to maintain
mechanical equilibrium everywhere away from defect
cores. When the evolution of ψðr; tÞ is thus constrained,
we show numerically that our model agrees with the
classical law of glide for a dislocation dipole in isotropic,
linear elasticity. Dislocation climb is also captured by the
diffusive PFC dynamics, and the elastic equilibrium con-
straint is the same as for glide. It would be interesting to
further explore the effect of compressive stresses on
dislocation climb. Although the analysis presented is based
on a 2D triangular lattice, it can be generalized to other
crystal lattices and 3D by modifying the symmetry of F
[44] and by solving the corresponding anisotropic elasticity
problem. These results put the PFC model on firmer ground
to study more complex defected configurations at the nano-
and mesoscale.
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