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Quantum Groups as Hidden Symmetries of Quantum Impurities
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We present an approach to interacting quantum many-body systems based on the notion of quantum
groups, also known as g-deformed Lie algebras. In particular, we show that, if the symmetry of a free
quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle
can be described by a deformed group, G,. Crucially, the single deformation parameter, g, contains all the

information about the many-particle interactions in the system. We exemplify our approach by considering
a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of ¢
from closed-form solutions in the perturbative regime allows one to predict the behavior of the system
for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative
calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling
strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on
quantum groups does not only allow for a drastic simplification of impurity problems, but also provides
valuable insights into hidden symmetries of interacting many-particle systems.
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The development of physics is accompanied by the study
of symmetries possessed by natural phenomena and, hence,
by the study of corresponding groups and their representa-
tions. Perhaps the most iconic example is the symmetry
group of special relativity, which is known as the Poincaré
group, whose irreducible representations classify elementary
particles [1]. Other important examples include gauge
symmetry leading to the standard model, point groups that
describe symmetries of crystal lattices in solid state physics,
and conformal symmetry which lies at the base of the string
theory and explains several critical phenomena [2,3].

During the last decades, there has been a great interest in
the study of quantum groups, which correspond to defor-
mations of the conventional Lie algebras [4-7]. From a
mathematician’s perspective, quantum groups are Hopf
algebras, which possess a coproduct, a counit, and an
antipode, in addition to the regular structures of an algebra
[8]. In physics, quantum groups have been applied to solve
the quantum Yang-Baxter equation [6] first, and, over the
years, found several applications to spin chains [9], anyons
[10,11], quantum optics [12,13], and rotational and vibra-
tional molecular spectra [14,15] (for further details see
Ref. [16] and references therein).

In this Letter, we show that quantum groups can be used
to drastically simplify the problems of quantum many-
particle physics. In particular, we demonstrate that if the
symmetry of an isolated quantum particle corresponds to a
Lie group G, in the presence of a many-body environment
this particle can be described by a “deformed” quantum
group, G,. Crucially, all the interactions of the quantum
impurity with the surrounding many-body bath are con-
tained in the so-called deformation parameter, g.
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For the sake of concreteness, let us consider a linear rigid
rotor interacting with a bath of bosons. An isolated rotor
can be described by the SO(3) group of rotations in three-
dimensional space [17]. Our claim is that, once the rotor is
immersed in a many-particle environment, the resulting
composite object can be described by the quantum group,
SO,(3). Let us start from the Hamiltonian describing the
interactions between a quantum rotor and the surrounding
many-particle bath of bosons,

Iq:ﬁrotor+ﬁb3th+lflint' (1)

Here, the first term, H .y, = BJ?, represents the rotational
kinetic energy of a linear rigid rotor with the rotational
constant B. The second term, Hy,gp, = Zwa)(kﬂ;,&”l;kﬁ”,
with Y, = [ dk, corresponds to the kinetic energy of the
bosons parametrized by the dispersion relation, (k). Here,
l;;ﬂ and Z;W are the bosonic creation and annihilation
operators cast in the angular momentum representation,
with k, A, and u labeling the bosonic linear momentum,
angular momentum, and its projection on the laboratory-
frame z axis, respectively. The last term of Eq. (1) describes
the interaction of the impurity with the bosonic bath [18],

Hi =) U(RY3, ()b}, + Y (Dby,).  (2)
kp

where Y M(Q) are the spherical harmonics [17] that
depend on the impurity orientation in the laboratory
frame, Q = (0, $), and U, (k) is the angular-momentum-
dependent coupling strength. The Hamiltonian of the form
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(1) was shown to describe the so-called angulon quasipar-
ticle that has been studied in the context of experiments on
molecules in superfluid helium nanodroplets [19-22].

In the absence of a many-particle bath, the Hamiltonian
(1) reduces to H,y,,, which is nothing else but the SO(3)
Casimir operator, j 2, that commutes with all the elements
of the corresponding Lie algebra. Therefore, the eigenval-
ues of H,, simply follow from the Casimir values of the
Lie group SO(3), E; = Bj(j + 1). Many-particle inter-
actions, Eq. (2), result in “dressing” of the rotor by a
cloud of bosonic excitations, which induce renormalization
of the rotor’s rotational constant, B, to some value B* < B.
Calculating B* numerically can be extremely challenging
for it involves addition of a macroscopic number of angular
momenta [23]. In what follows, we show that such a
calculation can be drastically simplified by casting the
problem in the language of quantum groups. We aim to
show that it is possible to find a deformed quantum algebra,
SO,(3). such that its deformation, ¢, describes the rotor-
bath interactions of Eq. (2).

The renormalized rotational constant, in analogy to the
polaron effective mass [24], is given by the second-order
finite difference,

B _%zz:(_l)j(j)}jz_j, (3)

J=0

where E; is the eigenenergy of H corresponding to total
angular momentum j. In the weak-coupling regime, where
the interaction term, H int» 1S small compared to ﬂmmr, the
impurity energy can be calculated within the perturbation
theory. Up to the second order in U,(k), the perturbed
energy is written as

n i'm’ (0] b1, Hin | jm) |0 ?
j/m,kMBJ(J—I— 1)=Bj'(j/+ 1) —w(k)

+ O(U,(k)%), (4)

with |0) being the vacuum state of the bath. From (3)
and (4), we obtain

roriE20)

J
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B/ + 1)+ (k) = B2~ )3~ )
+O(U (k)% (5)

where V, (k) = U,(k)\/ (24 + 1)/ (4x).

Equation (5) shows how a many-particle environment
deforms the rotational constant of a linear rotor, B — B*.
Our goal is to show that such a deformation can also be

obtained within the quantum group SO,(3). In what
follows, first, we briefly describe quantum groups and
introduce elementary tools for SO,(3) needed for the
description of a quantum rotor immersed in a many-particle
bath and, then, identify the deformation parameter, g, in
terms of the bath degrees of freedom.

First of all, quantum groups are Hopf algebras which
are deformations of Lie groups. In addition to associative
product and a unit element, Hopf algebras possess a
coproduct, a counit, and an antipode. These operations
are responsible for tensor product on representations, trivial
one-dimensional representation, and duality, respectively.
The algebra of functions on a classical group is a commu-
tative Hopf algebra with the coproduct inherited from
group multiplication, the counit from the unit, and the
antipode from group inversion. Its noncommutative defor-
mations are seen as functions on a quantum group. While,
in the present Letter, we do not explicitly use any of these
exotic structures, their importance becomes apparent if one
considers a system of several impurities.

For a given Lie algebra, its universal enveloping algebra
has a cocommutative coproduct given by x — 1 ® x +
x ® 1 for any x in the Lie algebra. Essentially, it is the dual
Hopf algebra to the algebra of functions on a corresponding
Lie group. The quantum group SO,(3), in turn, is a
noncocommutative deformation of the universal envelop-
ing algebra of the Lie algebra of SO(3). As a unital
associative algebra, it is generated by JZ, J 1, J4 satisfying
the following commutation relations:

[J4,J1) = +J4 [J4,J1) = [279],, (6)

where the square bracket implies
A 9 —49
[Alg = "——"= (7)

such that in the limit of ¢ — 1 one recovers [A] = A.

The corresponding Casimir operator is given by
Co=J4IL + V2, [T+ 1],
of an object that obeys symmetries of the quantum group
SO,(3) can be written as

and hence, the Hamiltonian

A,=BC,. (8)

The eigenvalues of the deformed Hamiltonian (8) are given
by EY = B|j],[j + 1], Furthermore, because the eigenval-
ues have to be real, the deformation parameter ¢ can be
written in the form of ¢ = %, with 7 being either a real or
an imaginary number. This allows us to write

sin[zj] sin[z(j + 1)]
E?’=B .
/ sin’(z
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From the energy (9), one can calculate the renormalized
rotational constant as

B* = Bcos(37). (10)

For small values of deformation, this gives

= B[1 —97%/2 + O(z*)]. Then, by matching the latter
with Eq. (5), where we have assumed weak coupling
between the impurity and the bath, we obtain

(o)

(_1)jV/1<k)2[C§9jo,zo]2 172
“BIG 1) (k) — B2- )3 —j)) IS

which is the main result of the Letter. Now, let us
demonstrate that B* given by Egs. (10) and (11) is valid
not only for weak interactions, but for arbitrary values of
the impurity-bath coupling strength.

To show that, as the first step, we calculate renor-
malization of the rotational constant in the opposite,
strong-coupling regime. There, the renormalized rotational
constant can be calculated by expanding Eq. (10) for small
values of B as follows:

B*=B-— 2322 Vﬁ(k)zi(z +1)+0O(B%), (12)
k.

7 o(k)’

where we used Zj,j(i)(—l)f[C{ijo]z =0 for VA

Let us compare the renormalized rotational constant (12)
with the result predicted by the angulon theory. For
this purpose, first, we rewrite the Hamiltonian (1) in the
corotating frame [19]

ang =35 HangS BJ/Z + Zwi bk/lﬂbkﬂﬂ

kip
+ Zvﬁ

biso + buaol + Hiy, (13)
where § = ¢=i#A:o=i0A, g=irA: | j' is the anomalous angular
momentum operator in the body-fixed frame, and
w, (k) = w(k) + BA(A+ 1). The interaction term, on the
other hand, is given by

H;m = -2BJ'

-A + BT (14)

Here, A = ZMWGW k/wbk/lv is the angular momentum of
the bath with 0' , being the angular-momentum-A repre-
sentation of SO(3). Furthermore, while the first term J A
defines the impurity- bath interaction, the last term I' =
>k Dok O a b,dﬂb W bbby is the effective
phonon-phonon 1nteract10n in the rotating frame.

For small values of the rotational constant B, the
interaction Hamiltonian A, can be treated as a perturba-
tion, and the corresponding energy can be calculated within
the perturbation theory. The unperturbed eigenstate can
be written as |jm0) ® U|0), where |jmn) is the eigenstate

of J?, and U = exp (=3 4, (bjy0 = brao) Vi(k)/ (@,(K)))
diagonalizes the unperturbed bosonic Hamiltonian.

The unperturbed eigenvalue is E’;ng(o) =Bj(j+1)—e
where the so-called deformation energy is given by

g0 = Y Va(k)*/w;(k).

Up to the second order in B, the perturbed energy reads

ET® =Bj(j+1) - ¢
Z‘ (jmnl( O|bk/1y “LAL U10)|jm0)?
kAun w}L(k)
|(jmn|(0|byy by, U~ H U]0)] jmO) 2
Ay kan w; (k) + @y (k')
+ 0(33). (15)

Note that, in contrast to the weak-coupling regime, the
perturbed energy of the strong-coupling approach also
includes two-phonon states. The corresponding renormal-
ized rotational constant is, then, given by

B* =B — 2322%/1(/1 + 1)+ O(B), (16)
kA

which coincides with Eq. (12) exactly at second order.

We would like to emphasize that the result of
Eq. (16) cannot be obtained directly from the weak-
coupling perturbative result, Eq. (5), which gives B* = B—
B2(232, Vi(k)*A(A+ 1)/w(k)* + O(U;(k)*)) + O(B%).
Therefore, the deformation parameter z connects these two
opposite expansions in a consistent way. Further, we note
that one cannot deduce 7 starting from Eq. (16), since 7
describes the deformation of a quantum rotor by a many-
body bath and not the other way around.

The analytical agreement between the quantum group
approach and the perturbation theory in the strong-coupling
regime is that the first signature of the rigid rotor dressed
by bosons (or the “angulon” [23]) can be described within
the quantum group SO, (3). For further justification, we
aim to go beyond perturbative techniques and compare
Eq. (10) with nonperturbative results obtained within
various many-body techniques. For this purpose, we
consider a bath with the Bogoliubov dispersion relation,
w(k) = \/e(k)[e(k) + 2gyon] [25], where e(k) = k*/2m,,
with m, bemg the boson mass, gy, is the boson-boson
contact interaction, and # is the boson particle density, and
we choose the impun’ty boson interaction of the form

= /8nke(k)/[w(k) (24 + 1)] [ drr*V,(r)j,(kr),
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FIG. 1. Comparison of the renormalized rotational constant,
B*/B, obtained within the quantum group (QG) approach and
using the variational method of Ref. [19] (a) as a function of
dimensionless bath density, 1, for the parameters of Ref. [18], and
(b) as a function of dimensionless rotational constant B for the
parameters of Ref. [19]. (c) The comparison with the diagram-
matic Monte Carlo (DiagMC) approach as a function of 7 for the
parameters used in Ref. [26]. See the text.

where the coupling is modeled by using Gaussian
functions, V,(r) = u,(27)~¥2¢~"/(27) and focus on the
leading orders, 4 =0, 1.

First, we compare the quantum group approach with a
variational method. In Ref. [19], it was shown that the
angulon problem can be solved using a variational ansatz
based on single-phonon excitations on top of a bosonic
coherent state. In Fig. 1(a), we show comparison of Eq. (10)
and the renormalized rotational constant obtained within
the variational method for the parameters of Ref. [18].
Namely, we set the parameters to gy, = 47ay,/m,,, with
apy, = 3.3//mpB, uy=1.75u; =218B, and ro=r; =
1.5/+/m,B, and present the results as a function of the
dimensionless bath density, 77 = n(m,B)*?. One can see

that a good agreement is obtained. In Fig. 1(b), we com-
pare the quantum group approach with the variational
method for the parameters given in Ref. [19] [gy, =
418(m?ug)™V2, u; = Suy, and ry = r; = 15(myuq)~"2].
There, we present the results as a function of the dimen-
sionless rotational constant, B = B/u,, and obtain a
similarly good agreement. As the next step, we go beyond
the variational method, and compare the quantum group
approach with the diagrammatic Monte Carlo (DiagMC)
technique [26], which is applicable at arbitrary coupling.
Figure 1(c), plotted for the parameters of Ref. [26]
(gbb = 47tabb/mb with App = 3.3/\/mbB, Uy = 3.331/!] =
300B, and ry=r; =1.5/y/myB), reveals an unprec-
edented agreement, which indicates that the quantum
group approach is a promising method for calculating
B*. We note that the results are not plotted for the range
at intermediate coupling where the quasiparticle picture
fails, see the discussion below.

The eigenvalues of the quantum Casimir operator,
Eq. (9), can be expanded in terms of the classical
Casimir values, E{ =B)_,a,j"(j+1)". Furthermore,
when the deformation parameter 7 is real, the expansion
turns into an alternating series [15]. In fact, when the series
has alternating signs, the expansion is in the form of the
so-called Dunham expansion [27], which is used to
describe a nonrigid diatomic molecule, whose interatomic
distance increases when it rotates faster [28]. Therefore, as
has been shown in Refs. [14,15], such a nonrigid rotor can
be described by a quantum group SO,(3) with |g| = 1.

From the correspondence between the Dunham expansion
and the quantum group, we deduce that, when the deforma-
tion parameter 7 is real, a rotor immersed in a many-particle
bath manifests itself as a nonrigid rotor with a renormalized
rotational constant, B* < B. In the context of quantum
impurity problems, the latter corresponds to the angulon
quasiparticle [20,23]. This can be seen from Fig. 2(a), where
the real values of 7 correspond to the blue sharp peaks
of Fig. 2(b). As shown in the same figure, the deformation
parameter 7 can also assume imaginary values, which signals
the breakdown of the quasiparticle picture. In fact, the latter
corresponds to the so-called angulon instabilities [18,22,
29,30], shown in Fig. 2(b). We would like to emphasize that,
since the angulon instabilities have already been observed in
the experiment [22], the imaginary values of the deformation
parameter obtained within the quantum group approach
correspond to a physical phenomenon.

As a final remark, we would like to note a striking
analogy with knot theory where computation of a quantity
within a classical group formalism is greatly simplified if
one postulates a corresponding quantum group symmetry.
More specifically, the Wilson loop observable in Chern-
Simons theory assigns to a knot, combined with a repre-
sentation of a classical group, a number depending on
the level parameter [31]. This number is defined via path
integration which is not completely satisfactory from the
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FIG. 2. (a) The deformation parameter, 7, as a function of the
dimensionless bath density, 7. (b) The spectral function of the
angulon quasiparticle as a function of the dimensionless energy,
E =E/B, and i, obtained using the variational approach of
Ref. [19]. The blue sharp peaks correspond to quasiparticle states,
whereas yellowish blurred peaks show angulon instabilities,
which match with the domain where 7 is imaginary. The model
parameters are the same as in Ref. [26]. See the text.

mathematical perspective. However, it can be rendered
rigorously in two fashions.

The first one consists of a perturbative expansion with
respect to the level parameter. This leads to a very com-
plicated universal series involving analogues of Feynman
diagrams. Computed in a light-cone gauge [32], this series
is called the Kontsevich integral [33,34]. This method has a
great theoretical value; however, it is extremely difficult—
and often impossible—to implement in practice [35]. The
second method [36] can be vaguely described as postulat-
ing that the knot is the world line of a particle obeying
quantum group symmetry. As a result, the Wilson loop
observable becomes accessible through a rather trivial
product expression involving the deformation parameter
q which is related to the level parameter of the theory in a
very explicit way.

The mechanism of the drastic simplification is not
completely understood, neither in mathematics nor in
physics. The discovery of such a phenomenon in the
context of quantum impurity problems indicates that it
might be a general feature of complex quantum systems
and, thereby, provide a general strategy for simplifying
computations via quantizing symmetries.

Thus, under the hypothesis that the quantum group is a
hidden symmetry of a quantum impurity, we have shown
that the effect of a many-particle environment on a rigid
rotor can be seen as a deformation of the Lie group
SO(3) to a quantum group, SO, (3). We demonstrated that,

by evaluating the deformation parameter, ¢, from the closed-
form perturbative expansion at weak coupling, one acquires
access to the solutions at arbitrary coupling strengths
through the quantum group formalism. We anticipate that
the presented approach might be quite general and can be
applied to, e.g., the polaron or spin impurity problems. Since
quantum impurities represent elementary building blocks of
many-particle systems, the approach based on quantum
groups paves the way to uncover hidden symmetries in
strongly correlated matter and, thereby, drastically simplifies
its theoretical description.
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