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Due to its ubiquitous presence, turbulence is often invoked to explain the origin of nonthermal particles
in astrophysical sources of high-energy emission. With particle-in-cell simulations, we study decaying
turbulence in magnetically dominated (or, equivalently, “relativistic”) pair plasmas. We find that the
generation of a power-law particle energy spectrum is a generic by-product of relativistic turbulence.
The power-law slope is harder for higher magnetizations and stronger turbulence levels. In large systems,
the slope attains an asymptotic, system-size-independent value, while the high-energy spectral cutoff
increases linearly with system size; both the slope and the cutoff do not depend on the dimensionality of our
domain. By following a large sample of particles, we show that particle injection happens at reconnecting
current sheets; the injected particles are then further accelerated by stochastic interactions with turbulent
fluctuations. Our results have important implications for the origin of nonthermal particles in high-energy
astrophysical sources.
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Despite decades of research [1–6], the origin of non-
thermal particles in space and astrophysical systems
remains poorly understood. Due to its ubiquitous presence,
turbulence is often invoked as a promising source of
accelerated particles [7–9], and significant progress has
been made on both theoretical [10–14] and numerical
[15–19] grounds. Turbulence is believed to play an impor-
tant role in the energization of nonthermal particles in the
solar corona and galaxy clusters [7–9], and it could also be
important in magnetically dominated environments like
pulsar magnetospheres and winds, jets from active galactic
nuclei, and coronae of accretion disks [20–22]. Particle
acceleration in magnetized turbulent flows might indeed
power the bright nonthermal synchrotron and inverse
Compton signatures from such high-energy sources [23–25].
While the turbulence dynamics in magnetically domi-

nated (“relativistic”) plasmas has been well characterized
by fluid simulations [26–34], the process of particle
acceleration can only be captured from first principles
by means of fully kinetic particle-in-cell (PIC) codes.
Pioneering studies of particle acceleration via driven
turbulence in moderately magnetized pair plasmas [35]
reported the generic development of nonthermal power-law
distributions. However, the power-law tail was found to
steepen with increasing system size, with disappointing
implications for large-scale astrophysical sources. Here, by
employing PIC simulations in unprecedentedly large
domains, we show that the power-law slope reaches an
asymptotic, system-size-independent value, with harder
slopes for higher magnetizations and stronger turbulence
levels. We show that particle injection happens at recon-
necting current sheets; the injected particles are then further

accelerated by stochastic interactions with turbulent
fluctuations.
We solve the coupled Vlasov-Maxwell system of equa-

tions through the PIC method [36] employing the PIC code
TRISTAN-MP [37,38] to perform 2D and 3D simulations of
decaying turbulence in pair plasmas. The electron-positron
plasma is initially uniform with density n0 and follows a
relativistic Maxwellian distribution with thermal spread
θ0 ¼ kBT0=mc2 ¼ 0.3. We set up a mean magnetic field
hBi ¼ B0ẑ and magnetic field fluctuations δBx and δBy,
whose strength is parametrized by the magnetization
σ0 ¼ δB2

rms0=4πn0w0mc2, where δB2
rms0 ¼ hδB2it¼0, and

w0 ¼ γth0 þ θ0 is the initial enthalpy per particle (γth0 is
the mean particle Lorentz factor). We vary σ0 from 2.5 to
160 (i.e., in the magnetically dominated regime σ0 ≫ 1,
where the Alfvén speed approaches the speed of light) and
δBrms0=B0 from 0.5 to 4. With our definition of σ0, our
results do not depend on the choice of initial thermal spread
θ0 (apart from an overall energy rescaling). We also
define σz ¼ B2

0=4πn0w0mc2 ¼ σ0ðB2
0=δB

2
rms0Þ.

Turbulence develops from uncorrelated fluctuations
with δBx ¼

P
m;n βmnn sinðkmxþ ϕmnÞ cosðknyþ φmnÞ

and δBy ¼ −
P

m;n βmnm cosðkmxþ ϕmnÞ sinðknyþ φmnÞ,
where m; n ∈ f1;…; Ng are the mode numbers, km ¼
2πm=L and kn ¼ 2πn=L the wave numbers along x
and y, respectively, ϕmn and φmn random phases, and
βmn ¼ 2δBrms0=½Nðm2 þ n2Þ1=2�. With this choice, each
ðm; nÞ mode carries the same power, so the initial energy
spectrum peaks near kN ¼ 2πN=L, where L is the domain
size (typically, N ¼ 8). This defines the energy-carrying
scale l ¼ 2π=kN , used as our unit length. For 3D simu-
lations, we also modulate δBx and δBy sinusoidally in the
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z direction, with two modes of wavelength L and L=2 and
random phases.
The large size of our computational domain (with L up to

65,600 cells in 2D and up to 2400 in 3D) allows us to
achieve asymptotically converged results. The plasma skin

depth de0 ¼ c=ωp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γth0mc2=4πn0e2

p
is resolved with

10 cells in 2D and 3 cells in 3D (in 2D we have checked that
de0 ¼ 3 or 10 cells give identical results, including the
development of turbulent structures). The simulation time
step is controlled by the numerical speed of light of
0.45 cells=time step. We typically employ 16 (macro)
particles per cell in 2D and 4 per cell in 3D, but we have
tested that our results are the same when using more
particles per cell (up to 256 in 2D and up to 16 in 3D).
Figure 1(a) shows the fully developed turbulent state

from a 2D simulation with σ0 ¼ 10, by plotting the current
density Jz. Vortexlike and sheetlike coherent structures are
ubiquitous, in analogy to nonrelativistic kinetic simulations
e.g., [39–43]. Elongated current sheets tend to fragment
into chains of plasmoids due to the plasmoid instability
[44–47]. As we show below, reconnecting current sheets—
a natural byproduct of turbulent cascades in magnetized
plasmas [48–52]—play a vital role for particle injection
into the acceleration process. The time evolution of the
magnetic power spectrum PBðkÞ is presented in Fig. 1(b).
Each curve refers to a different time, as indicated by the
corresponding vertical dashed lines in the inset, where
we present the energy decay in turbulent fluctuations
δB2

rms=B2
0. As the magnetic energy decays, the inertial

range (kde0 ≲ 0.4) of the magnetic power spectrum tends to
flatten from PBðkÞ ∝ k−5=3 [53,54] to PBðkÞ ∝ k−3=2

[55,56]. At kinetic scales (kde0 ≳ 0.4), the spectrum steep-
ens to PBðkÞ ∝ k−4, similar to what has been found in
kinetic simulations of driven turbulence with moderate
magnetizations [35,57].
The time evolution of the corresponding particle spec-

trum dN=d lnðγ − 1Þ is presented in Fig. 2(a), where γ is
the particle Lorentz factor. The figure shows that effici-
ent nonthermal particle acceleration is a self-consistent
byproduct of relativistic turbulence. As a result of field
dissipation, the spectrum shifts to energies much larger than
the initial Maxwellian (shown by the blue line peaking at
γ − 1 ∼ γth0 − 1 ≃ 0.6). At late times, when most of the
turbulent energy has decayed, the spectrum stops evolving
(orange and red lines): it peaks at γ − 1 ∼ γth0ð1þ σ0=2Þ−
1 ∼ 5, and extends well beyond the peak into a nonthermal
tail of ultrarelativistic particles, with power-law slope
p ¼ −d logN=d logðγ − 1Þ ∼ 2.9. The inset shows that
the value of the power-law slope is not universal: for fixed
δB2

rms0=B
2
0, the tail becomes harder with increasing σ0, in

agreement with Ref. [35] and in analogy to simulations of
relativistic magnetic reconnection [58–62]; more dramati-
cally, at fixed magnetization σ0, the spectrum is much harder
for stronger turbulent fluctuations (i.e., δB2

rms0=B
2
0 ≳ 1).

The power-law slopes quoted in the inset of Fig. 2(a)
persist in the limit of asymptotically large domains.
In Fig. 2(b), we show for σ0 ¼ 10 and δB2

rms0=B
2
0 ¼ 1

the dependence of the time-saturated particle spectrum on
the size of our 2D box, which we vary in the range
L=de0∈f410;820;1640;3280;6560g. While earlier works,
which employed smaller domains, had claimed that the
power-law slope steepens with increasing system size [35],
we find that the slope saturates for asymptotically large
systems [top inset in Fig. 2(b)], which allows us to
extrapolate our results to the astrophysically relevant
regime L=de0 ≫ 1. On the other hand, the high-energy
cutoff γc—defined as the Lorentz factor where the spectrum
drops one order of magnitude below the power-law best
fit—linearly increases with system size [bottom inset in
Fig. 2(b)]. As discussed below, stochastic acceleration by
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FIG. 1. Developed turbulence from a 2D simulation with
σ0 ¼ 10, δBrms0=B0 ¼ 1, and L=de0 ¼ 3280 (with l ¼ L=8).
Top: Current density Jz at ct=l ¼ 5.5 (normalized to en0c)
indicating the presence of coherent structures like current sheets,
plasmoids, and vortices (see inset). Bottom: Magnetic power
spectra computed at different times, as indicated by the vertical
dashed lines (same color coding) in the inset, which also shows
the time evolution of δB2

rms ¼ hδB2i normalized to B2
0.
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turbulent fluctuations dominates the energy gain of non-
thermal particles. High-energy particles cease to be effi-
ciently scattered by turbulent fluctuations when their
gyroradius exceeds the energy-carrying scale l ¼ 2π=kN ,
implying an upper limit to their Lorentz factor of
γc ∼ e

ffiffiffiffiffiffiffiffiffi
hB2i

p
l=mc2 ∼ ffiffiffiffiffi

σz
p

γth0ðl=de0Þ, which successfully
matches the scaling of γc on system size in the inset of
Fig. 2(b) (this argument assumes that turbulence survives
long enough to allow the particles to reach this upper limit).
By varying l=L, we have explicitly verified that γc ∝ l,
rather than γc ∝ L.
We have confirmed our main results with large-scale 3D

simulations, since several properties of the turbulence itself,
as the energy decay rate and the degree of intermittency, are
known to be sensitive to dimensionality [53]. Results from
our largest 3D simulation are presented in Fig. 3. The plot

of Jz in the fully developed turbulent state (top) shows the
presence of a multitude of current sheets, as found in 2D.
The particle energy spectrum evolution is presented in
Fig. 3(b). A pronounced nonthermal tail develops, whose
power-law slope and high-energy cutoff are remarkably
identical to its 2D counterpart (in the inset, we compare the
time-saturated spectra of 2D and 3D simulations for two
different box sizes, which nearly overlap).
To unveil the particle acceleration mechanisms, we have

tracked the trajectories of a random sample of∼106 particles
from a 2D simulation with σ0 ¼ 10, δBrms0=B0 ¼ 1, and
L=de0 ¼ 1640. In Fig. 4(a) we show the Lorentz factor
evolution of 10 particles that eventually populate the non-
thermal tail [i.e., with γ > 30 at ct=l ¼ 12, comparewith the
cyan line in Fig. 2(b)]. A common feature of these tracks is
the rapid energy increase from γ ∼ γth0 up to γ ∼ 10–100.
Indeed, we have verified that the overwhelming majority
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FIG. 2. Top: Particle spectrum evolution for the simulation in
Fig. 1. At late times, the spectrum displays an extended power-
law tail with slope p ¼ −d logN=d logðγ − 1Þ ∼ 2.9. The inset
shows the dependence of p on δB2

rms0=B
2
0 and σ0. Bottom:

Particle spectra at late times (ct=l ¼ 12) for simulations with
fixed σ0 ¼ 10, δBrms0=B0 ¼ 1, and l ¼ L=8, but different system
sizes L=de0 ∈ f410; 820; 1640; 3280; 6560g. The insets show the
dependence of p (dashed line is the asymptotic slope p ¼ 2.9)
and the cutoff Lorentz factor γc [dashed line is the predicted
scaling γc ∼

ffiffiffiffiffi
σz

p
γth0ðl=de0Þ] on the system size.
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FIG. 3. Top: Current density Jz at ct=l ¼ 4 from a 3D
simulation with σ0 ¼ 10, δBrms0=B0 ¼ 1, L=de0 ¼ 820, and
l ¼ L=4, showing the copious presence of current sheets.
Bottom: Time evolution of the corresponding particle spectrum.
The inset shows for two different box sizes that the time-saturated
particle spectra are almost identical between 2D (blue) and
3D (red).
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(∼97%) of the particles belonging to the nonthermal tail
experience in their life such a sudden episode of energy gain.
This event is extracting the particles from the thermal pool
and injecting them into the acceleration process. Inspired
by Fig. 4(a), we identify the injection time tinj as the time
when the energy increase rate (averaged overΔt ¼ 45de0=c)
satisfies Δγ=Δt > _γthr, and prior to this time the particle
Lorentz factor was γ < 4γth0 ∼ 6. We take _γthr ≃ 0.01ffiffiffiffiffi
σ0

p
γth0ωp0, but we have verified that our identification of

tinj is nearly the samewhen varying _γthr around this value by
up to a factor of 3.

We then explore the properties of the electromagnetic
fields at the injection location. The red circles in Fig. 4(b)
show the probability density function (PDF) of the electric
current density jJz;pj experienced by the particles at their
injection time (normalized by Jz;rms in the whole domain at
that time). The peak of the PDF is at jJz;pj ∼ 4Jz;rms, and
∼95% of the injected particles reside at jJz;pj > 2Jz;rms, a
threshold that is usually employed to identify current sheets
[63]. This should be contrasted with the blue diamonds,
showing the PDF of the electric current experienced by all
tracked particles at ct=l ¼ 4, regardless of whether they are
injected or not. As expected, this peaks at zero, and only
∼9% of particles have jJz;pj > 2Jz;rms. Thus, particle
injection into the acceleration process occurs at current
sheets, more specifically, at reconnecting current sheets.
This is illustrated in Fig. 4(c), where we show Jz=en0c in a
subset of the simulation domain at ct=l ¼ 4. The over-
plotted black circles indicate the locations of particles
whose tinj is around this time. Clearly, most of the particles
participating in the injection episode reside at active re-
connection layers, fragmenting into plasmoids.
Acceleration by the reconnection electric field [58–60]

governs the first phase of particle energization, as
shown in Fig. 5. Here, each colored curve represents the
average Lorentz factor of particles having the same
injection time tinj (within Δtinj ¼ 0.48ct=l). The linear
growth from hγi ∼ 1 up to hγi ∼ 30 (i.e., the injection
phase) is powered by field-aligned electric fields, whose
magnitude is jEkj ≃ βRδBrms, via

dhγi
dt

¼ βR
δBrms

B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σzð1þ θ0=γth0Þ

p
γth0ωp0: ð1Þ

The dashed black lines in Fig. 5 show the predictions
of Eq. (1) assuming a reconnection rate βR ≃ 0.05, as
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FIG. 4. Top: Evolution of the Lorentz factor for 10 represen-
tative particles selected to end up in different energy bins at
ct=l ¼ 12 (matching the different colors in the colorbar on the
right). Middle: PDFs of jJz;pj=Jz;rms experienced by the injected
particles at their tinj (red circles) and by all tracked particles at
ct=l ¼ 4 (blue diamonds). Bottom: Zoom of Jz at ct=l ¼ 4 with
circles indicating the positions of the particles that are injected
around this time.
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FIG. 5. Evolution of the mean Lorentz factor of different
generations of particles. The initial energy gain, due to the
reconnection electric field, can be modeled as in Eq. (1) with
βR ¼ 0.05 (dashed lines), while the subsequent evolution, gov-
erned by stochastic interactions with the turbulent fluctuations,
follows Eq. (3) (dot-dashed line).
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appropriate for relativistic reconnection with guide field
comparable to the alternating field [64].
After the injection phase, the subsequent energy gain

(which eventually dominates the overall energization of
highly nonthermal particles) is powered by perpendicular
electric fields via stochastic scatterings off the turbulent
fluctuations. This is a biased random walk in momentum
space, which can be modeled with a Fokker-Planck
approach [65], provided that the fractional momentum
change in single scatterings is small, as it is the case in
our simulations. From the Fokker-Planck equation for
relativistic particles,

dhγi
dt

¼ 1

γ2
∂
∂γ ½γ

2Dp�; Dp ¼ 1

3

δV2
rms

c
γ2

λmfpðγÞ
; ð2Þ

where Dp is the diffusion coefficient in momentum space
for a stochastic process akin to the second-order Fermi
mechanism, δVrms is the typical velocity of the scatterers
(typically δVrms=c≲ 0.3 in our simulations, which justifies
a nonrelativistic treatment), and λmfpðγÞ is the particle
mean-free path. Since particles are most efficiently scat-
tered by turbulent fluctuations on the scale of their
gyroradius [66], we assume a Bohm-like scaling for
λmfpðγÞ ¼ κðc=ωcÞðB0=δBrmsÞ2 where ωc ¼ eB0=γmc is
the gyrofrequency and κ is a dimensionless coefficient.
This leads to

dhγi
dt

¼ κ−1
δB2

rms

B2
0

δV2
rms

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σzð1þ θ0=γth0Þ

p
γth0ωp0: ð3Þ

Taking the temporal decay of the magnetic and velocity
fluctuations directly from our simulation, we obtain for
κ ¼ 10 the dot-dashed lines in Fig. 5, which agree well with
our simulation results.
In summary, we have demonstrated that relativistic

plasma turbulence is a viable mechanism for particle
acceleration, since it self-consistently generates nonthermal
power-law tails. The power-law slope is harder (near p ∼ 2)
for higher magnetizations and stronger turbulence levels.
Thanks to our large domains, we have demonstrated that
the power-law slope reaches an asymptotic, system-size-
independent value, while the high-energy spectral cutoff
increases linearly with system size; this allows us to
extrapolate our results to the macroscopic scales of astro-
physical sources. The time-saturated particle energy spec-
trum is remarkably similar in 2D and 3D, suggesting that
the same acceleration process operates, regardless of the
dimensionality. By following a large sample of particles,
we have shown that their energization occurs in two stages:
particle injection happens at reconnecting current sheets;
this is followed by a phase of stochastic acceleration where
the particles scatter off turbulent fluctuations. Analytical
predictions are in agreement with the simulations results,
confirming the two-stage nature of the acceleration process.
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