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The accurate description of electrons at extreme density and temperature is of paramount importance
for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the
dynamic structure factor Sðq;ωÞ constitutes a key quantity as it is directly measured in x-ray Thomson
scattering experiments and governs transport properties like the dynamic conductivity. In this work, we
present the first ab initio results for Sðq;ωÞ by carrying out extensive path integral Monte Carlo simulations
and developing a new method for the required analytic continuation, which is based on the stochastic
sampling of the dynamic local field correction Gðq;ωÞ. In addition, we find that the so-called static
approximation constitutes a promising opportunity to obtain high-quality data for Sðq;ωÞ over substantial
parts of the warm dense matter regime.
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Over the recent years, there has been a remarkable spark
of interest in so-called warm dense matter (WDM), an
extreme state with high densities (rs ¼ ā=aB ∼ 1, ā is the
mean interparticle distance and aB the Bohr radius) and
temperatures [θ ¼ kBT=EF ∼ 1, with EF ¼ ℏ2q2F=2m and
qF ¼ ð9π=4Þ1=3aB=rs being the Fermi energy and wave
number]. These conditions occur, for example, in astro-
physical objects such as white and brown dwarfs [1–5] and
giant planet interiors [6–10], hot-electron chemistry
[11,12], laser-excited solids [13], and along the compres-
sion path in inertial confinement fusion experiments
[14–17]. WDM is nowadays routinely realized at large
research facilities like NIF [18,19], LCLS [20,21], and the
European X-FEL [22]. Here x-ray Thomson scattering
(XRTS) [23–25] has emerged as an important method of
diagnostics, with the electronic dynamic structure factor
Sðq;ωÞ being the central quantity. However, to make XRTS
a reliable tool, an accurate theoretical description of the
dynamic density response of warm dense electrons is
indispensable [26].
In this Letter, we focus on the uniform electron gas

(UEG), one of the most fundamental model systems in
physics and quantum chemistry [27,28]. While the static
properties of the UEG in the ground state have mostly been
known for over three decades [29–32], the intricate interplay
of Coulomb coupling and quantum degeneracy effects with
thermal excitations has rendered a thermodynamic descrip-
tion in the warm dense regime a challenging problem that
has only been solved recently [33–35], see Ref. [36] for an
extensive review. Naturally, dynamic simulations of elec-
trons that are required for frequency-resolved properties

(dynamic conductivity, optical absorption, collective excita-
tions, etc.) and rigorously take into account all the afore-
mentioned effects are even more difficult. Therefore, results
for Sðq;ωÞ at WDM conditions that go beyond the random
phase approximation (RPA) [37] are sparse and have been
obtained using uncontrolled approximations, such as dia-
gram-summation-based Green function techniques [38–41].
On the other hand, ab initio path integral Monte Carlo
(PIMC) [42] simulations can provide an exact description,
but are limited to static properties that can be formulated in
terms of an “imaginary time,” iτ ∈ ½0; iℏβ�. Therefore,
to obtain quantities that depend on frequency, such as
Sðq;ωÞ, one has to perform an analytic continuation from
imaginary to real times. Unfortunately, this constitutes a
notoriously difficult problem [43–45], and a universal
approach is missing.
In this work, we overcome this difficulty for the case

of the UEG. (i) We carry out PIMC calculations of the
imaginary-time density–density correlation function
Fðq; τÞ [see Eq. (1)] for different temperatures θ ¼ 0.75,
1, 2, 4, going from the WDM regime (rs ¼ 2) to the
strongly correlated electron liquid (rs ¼ 10). (ii) These data
serve as the main input for a new reconstruction method
that is based on a stochastic sampling of the dynamic local
field correction (LFC) Gðq;ωÞ [see Eq. (5)], which allows
us to satisfy a multitude of exact constraints. (iii) We are
thereby able to present the first accurate results for the
dynamic structure factor at WDM conditions and to
explicitly study the combined impact of quantum diffrac-
tion, temperature and correlation effects on the dispersion
relation. (iv) We furthermore investigate the static approxi-
mation and uncover that it yields highly accurate results in a
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broad parameter range. This opens new avenues towards
ab initio data for Sðq;ωÞ at conditions that would otherwise
be inaccessible due to the fermion sign problem [46–48].
In addition to being interesting in their own right, we

expect our accurate results for Sðq;ωÞ of the UEG to be
directly useful for, e.g., the interpretation of WDM experi-
ments [26] (e.g., using the Chihara decomposition [49,50]),
various density functional theory (DFT) applications
[51–55], and quantum hydrodynamics [56]. Dynamic local
field corrections are used not only for the calculation of
equilibrium properties but are an important input for several
nonequilibrium quantities like the stopping power [57,58],
for electron-ion energy transfer rates [59], for the electrical
and thermal conductivities [60,61], or for collisional
absorption of laser energy [62].
Theory.—We carry out fermionic PIMC simulations of

the UEG in the canonical ensemble using a variation of the
worm algorithm by Boninsegni et al. [63,64] to compute
the imaginary-time density–density correlation function
(we use Hartree atomic units throughout this work)

Fðq; τÞ ¼ 1

N
hnqðτÞn−qð0Þi; ð1Þ

where the Fourier components of the density, nqðτÞ, are
evaluated at imaginary times τ ∈ ½0; β� corresponding to the
computation of thermodynamic averages (see Refs. [65,66]
for details and the Supplemental Material [67] for a
graphical depiction). It should be noted that, although
PIMC simulations of electrons are afflicted with a severe
sign problem [36,46–48], which constitutes the main
obstacle in our simulations, a straightforward evaluation
of Eq. (1) using the more advanced permutation blocking
PIMC (PB-PIMC) and configuration PIMC (CPIMC)
methods [82–85] is not yet possible.
Equation (1) is connected to the dynamic structure

factor via

Fðq; τÞ ¼
Z

∞

−∞
dωSðq;ωÞe−τω; ð2Þ

which means that the task at hand is to perform an inverse
Laplace transform to solve for Sðq;ωÞ. We mention that
Eq. (2) is directly obtained by replacing the real time
argument in the Fourier transform of Sðq;ωÞ (i.e., the
intermediate scattering function which is not accessible in
PIMC) by −iτ. In addition to our PIMC data for Fðq; τÞ, it
is also possible to obtain exact results for four frequency
moments [27,68–70]

hωki ¼
Z

∞

−∞
dωωkSðq;ωÞ; k ¼ −1; 0; 1; 3; ð3Þ

see Ref. [67] for details. The typical strategy would now be
to find a trial function Strialðq;ωÞ, which, when inserted into
Eqs. (2) and (3) reproduces the PIMC data within the given

statistical uncertainty. We investigated different approaches,
including the genetic evolution of an entire trial population
[44] and the application of a deep neural network to learn the
needed inverse Laplace transform [86]. Unfortunately, the
different methods did not converge towards the same
solution for Sðq;ωÞ in many cases, which means that the
information about the dynamic structure factor provided by
Eqs. (2) and (3) is not sufficient to determine a unique
solution.
To overcome this obstacle, we make use of the fluc-

tuation-dissipation theorem [27,71],

Sðq;ωÞ ¼ −
Imχðq;ωÞ

πnð1 − e−βωÞ ; ð4Þ

which links Sðq;ωÞ to the imaginary part of the density
response function,

χðq;ωÞ ¼ χ0ðq;ωÞ
1 − vq½1 −Gðq;ωÞ�χ0ðq;ωÞ

; ð5Þ

with vq ¼ 4π=q2, and χ0ðq;ωÞ referring to the noninter-
acting system. The dynamic LFC Gðq;ωÞ ∈ C contains all
exchange-correlation effects beyond the mean field level;
i.e., the RPA is recovered by setting G ¼ 0.
Thus, the computation of Sðq;ωÞ has been reformulated

into a quest for Gðq;ωÞ, which is highly advantageous as
many properties of the latter are known.More specifically, we
stochastically sample trial solutions Gtrialðq;ωÞ that exactly
fulfill (i) the Kramers-Kronig relation between ImGðq;ωÞ
and ReGðq;ωÞ, (ii) that ImGðq;ωÞ [ReGðq;ωÞ] is odd
[even] with respect to ω, (iii) the correct high and low
frequency limits ReGðq;∞Þ and ReGðq; 0Þ known from
our PIMC data, and (iv) the corresponding limits
ImGðq;∞Þ ¼ ImGðq; 0Þ ¼ 0. These Gtrialðq;ωÞ are then
used to compute the corresponding trial structure factors,
Strialðq;ωÞ, which are subsequently plugged into Eqs. (2)
and (3) and discardedwhen they are not in agreementwith the
PIMC data for Fðq; τÞ and hωki.
In contrast to the direct reconstruction of Sðq;ωÞ, the

incorporation of the exact constraints onG leads to a drastic
reduction in the space of trial structure factors, and the
problem becomes tractable. The final result is then com-
puted as the average over the set of those Strialðq;ωÞ that
reproduce Fðq; τÞ and hωki within the given statistical
uncertainty. In addition, this allows us to compute the
variance of this set as a measure of the remaining
uncertainty; see Ref. [67] for details.
Results.—In Fig. 1, we show our results for Sðq;ωÞ

obtained for N ¼ 34 unpolarized electrons at θ ¼ 1 for
different values of rs. To rule out possible finite-size
effects, we have carried out PIMC simulations for larger
particle numbers where possible. It turns out that, as in the
case of the previously studied static structure factor
[34,36,46,72], the only effect of the finite simulation
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box is the discrete set of available q values, but the
functional form of Sðq;ωÞ remains practically unchanged.
The green curves correspond to the RPA, which exhibits
the well-known sharp plasmon peak below a critical wave
vector qc and gets significantly damped upon reaching the
pair continuum [27,37], cf. Fig. 2 for the corresponding
dispersion relation.
The red curves depict the solutions of our stochastic

dynamic LFC (DLFC) procedure. Observe the relatively

large uncertainty in Sðq;ωÞ for rs ¼ 2 at low frequency,
which is a direct consequence of the increased statistical
uncertainty in Fðq; τÞ caused by the fermion sign problem.
This allows for the possibility of a small diffusive peak
[87], which is most likely not a real physical effect, but
cannot be ruled out on the basis of our PIMC data.
Nevertheless, even at this high density, which falls well
into the WDM regime, we are able to resolve significant
deviations from the RPA around q ¼ 2qF.
With decreasing density, the deviations from the RPA

curves become more pronounced, and we observe both a
broadening and a significant redshift at intermediate q for
rs ¼ 4 and rs ¼ 6. At the strongest coupling strength
studied in this work, rs ¼ 10, the DLFC curves, at
intermediate q (2.35 and 1.88), develop in addition to
the low-frequency maximum, a broad shoulder at higher
frequency, close to the peak of the RPA result. This
behavior is caused by strong exchange-correlation effects
in the dynamic density response and has some resemblence
with the ground state results of Takada et al. [88,89],
where this additional feature was interpreted as an incipient
excitonic mode.
Let us now consider the dashed black curves, which

correspond to the static approximation (SLFC), i.e., to
setting Gstaticðq;ωÞ ¼ ReGðq; 0Þ in Eq. (5). This approach
is motivated by the considerable success of static LFC-
based schemes such as STLS (Singwi-Tosi-Land-Sjölander)
[90–92] and VS (Vashishta-Singwi) [92–94] in the descrip-
tion of the UEG; see Ref. [36] for a an extensive topical

FIG. 1. Dynamic structure factor of the uniform electron gas at θ ¼ 1 for different rs values. DLFC and SLFC correspond to the full
reconstructed dynamic LFC (red) and to using Gstaticðq;ωÞ ¼ ReGðq; 0Þ (black dashes), respectively. Note that the curves for different
rs have been multiplied with scaling factors. The shaded areas depict the given interval of uncertainty. The coupling strength increases
from left to right; the corresponding ratios of mean interaction and kinetic energy are 0.35,0.79,1.23, and 2.08, respectively.

FIG. 2. Peak position (central lines) and full width at half
maximum (red shaded area, for DLFC and outer lines, for
SLFC and RPA) of Sðq;ωÞ at θ ¼ 1 for rs ¼ 4 (left) and rs ¼ 10
(right). The shaded gray area indicates the pair continuum in the
ground state.
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discussion. However, in contrast to the approximate treat-
ment of Gstatic in those works, here we use the exact static
limit of G that is computed from our PIMC data. The results
are striking: evidently, already the inclusion of the exact
static LFC leads to an overall very good agreement with the
exact results (except for rs ¼ 10) and, thus, to a remarkable
improvement over the RPA. At rs ¼ 2, no deviation from the
DLFC curve can be resolved within the given accuracy. At
rs ¼ 4 and rs ¼ 6, there appear small deviations from the
exact result at intermediate q, but both the redshift and
the broadening of the peak are reproduced. Even at rs ¼ 10,
the static approximation captures the evolution of the
plasmon peak, but it misses the broad shoulder at high
frequencies.
In Fig. 2, we show the corresponding dispersion relations

derived from the peak of Sðq;ωÞ for rs ¼ 4 and rs ¼ 10.
For the higher density, both the DLFC and SLFC curves
exhibit a significant redshift and broadening compared to
the RPA for 1≲ q=qF ≲ 3, whereas for small and large
wave numbers all three curves eventually converge, as it is
expected. Notice the striking agreement between DLFC
and the static approximation both in peak position and
width over the entire q range.
At rs ¼ 10 the exact dispersion relation exhibits an

interesting nonmonotonic behavior with a minimum
around qmin ≈ 1.9qF, which is in striking contrast to the
monotonically increasing RPA curve. The minimum is also
visible (although less pronounced) in the static approxi-
mation. Such a negative dispersion has previously been
reported in the ground state both in experiments with alkali
metals [95] and in static LFC-based calculations [96,97], as
well as in molecular dynamics simulations of the strongly
coupled classical one-component plasma [98].
Finally, in Fig. 3, we investigate the temperature

dependence of Sðq;ωÞ at rs ¼ 10 for q=qF ≈ 1.88, i.e.,
in the minimum of the dispersion relation. At high temper-
ature (θ ¼ 4), DLFC and SLFC are practically indistin-
guishable whereas the RPA reproduces the broad peak
qualitatively. Decreasing the temperature to θ ¼ 2 leads to

a significantly increased deviation from RPA as the redshift
becomes more pronounced. Still, this exchange-correlation
effect is almost exactly captured by the static approxima-
tion. For the lowest temperatures, θ ¼ 1 and θ ¼ 0.75, the
frequency dependence of Gðq;ωÞ finally manifests itself,
as the red curves exhibit a nontrivial shape with a low-
frequency peak and a high-frequency shoulder, which get
merged into a single broad peak in the static approximation.
Summary and discussion.—We have carried out PIMC

simulations of the UEG from the electron liquid (rs ¼ 10)
to the WDM regime (rs ¼ 2) for 0.75 ≤ Θ ≤ 4 and
computed the imaginary-time density–density correlation
function, Fðq; τÞ, and various frequency moments,
cf. Eq. (3). These data were used as input for our new
reconstruction scheme to compute the first ab initio data for
the dynamic structure factor Sðq;ωÞ at finite temperature
without any approximation in the treatment of exchange-
correlation, temperature, or quantum degeneracy effects.
This was achieved by using the fluctuation-dissipation
theorem to stochastically sample the dynamic local field
correction, Gðq;ωÞ, fulfilling a multitude of exact proper-
ties, which renders the analytic continuation tractable.
This has allowed us to study the impact of correlation

effects on Sðq;ωÞ, which manifest as a small, yet signifi-
cant broadening and redshift at high density, and an
emerging low frequency peak towards stronger coupling.
The latter is analogous to a possible incipient excitonic
mode previously reported in the ground state [88,89,99].
The application of our approach to even lower densities,
10 < rs < 100, to investigate a possible phase transition in
the strongly correlated Fermi liquid [89] is beyond the
scope of the present work and remains a challenging topic
for future research.
In addition to our full dynamic LFC, we have also

studied the effect of the static approximation, i.e., by setting
Gstaticðq;ωÞ ¼ Gðq; 0Þ for all frequencies on Sðq;ωÞ. The
results are very promising, as this approach constitutes a
distinct improvement over the RPA for all considered
parameters, in particular, in the high density regime,
rs ≲ 4, that is of interest in contemporary WDM research.
While the PIMCþ DLFC calculations presented in this
work are limited by the fermion sign problem, it was
recently demonstrated [100,101] that the simulation of the
inhomogeneous electron gas using the novel CPIMC and
PB-PIMC methods allows for accurate results of the static
LFC over significant parts of the WDM regime. Therefore,
a future extensive quantum Monte Carlo study of Gðq; 0Þ,
which might culminate in a possible parametrization
Gðq; 0; rs; θÞ analogous to previous ground state works
[102–104], is highly desirable.
We are confident that our ab initio results for the

dynamic density response of the UEG will be of high
interest for the warm dense matter community and beyond.
Direct applications include the interpretation of experi-
ments using XRTS [23] (see Ref. [26] for a topical

FIG. 3. Dynamic structure factor for rs ¼ 10, q=qF ≈ 1.88, and
different temperatures that are distinguished by the line styles.
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discussion), the construction of novel functionals in DFT
[51–53] and time-dependent DFT [54], and quantum
hydrodynamics [56]. In addition, our data will serve as a
valuable benchmark for the development of new methods
for the description of the dynamics of warm dense
electrons, such as the method of moments by Tkachenko
and co-workers [87,105–107] and the recently presented
advances in the nonequilibrium Green function method by
Kas and Rehr [38,39].
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