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Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic
superfluidity. Here, we present a strong coupling theory for the critical temperature of p-wave pairing
between spin polarized fermions immersed in a Bose-Einstein condensate. The fermions interact via the
exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency
and momentum dependence of the resulting induced interaction. We demonstrate that both retardation and
self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on
experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-
fermion interaction strength as well as their masses, and identify the most suitable system for realizing a
p-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using
light bosons mixed with heavy fermions.
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The theory of Cooper pairing of electrons due to an
induced attractive interaction mediated via crystal phonons
successfully explained the origin of superconductivity and
stands out as a highlight of quantum many-body physics
[1]. Interest in pairing with non-s-wave symmetry began
with the understanding of superfluidity in 3He [2] and has
increased further with the advent of systems such as the
copper and iron based high temperature superconductors
[3,4], for which many fundamental questions remain.
Ultracold atoms have emerged as a powerful platform to
explore such many-body physics, and the realization of
strong s-wave pairing in a Fermi gas was a landmark
achievement [5,6]. Pairing in these gases is however
brought by a direct attractive interaction between the
fermions, and so far no one has realized pairing via an
induced interaction in cold atom systems.
Spin-polarized fermions mixed with a Bose-Einstein

condensate (BEC) represents a promising setup for realiz-
ing a p-wave superfluid caused by an induced interaction.
Here, the fermions gain an effective attraction through
exchanging phonons in the BEC [7,8]. A very attractive
feature of such a mediated p-wave interaction is that both
its strength and range can be tuned by changing the
properties of the BEC. Experimentally, much progress
has been made recently on atomic mixtures and the list
of trapped Bose-Fermi mixtures is already long [9–20].
Cooper pairing in atomic Bose-Fermi mixtures was

originally predicted using weak coupling BCS theory
[21], and since then several authors have considered the
problem using theories with varying degree of sophisti-
cation [22–26]. It has furthermore been predicted that
topological p-wave superfluids can be realized in mixed
dimensional Bose-Fermi mixtures [27,28]. However, a
strong coupling theory for the critical temperature of a
three-dimensional p-wave superfluid including the full
energy and momentum dependent pairing and self-energy
effects in a consistent way, is still lacking.
We present here such a strong coupling theory for the

critical temperature Tc of p-wave pairing of spin polarized
fermions in a BEC. Including the full frequency and
momentum dependence of the induced interaction between
the fermions caused by the exchange of phonons in the
BEC, we show that retardation as well as self-energy effects
can significantly suppress Tc. We perform a systematic
analysis varying both the boson-boson and boson-fermion
interaction strengths as well as their mass ratio, with an
emphasis on experimentally relevant atomic mixtures. This
allows us to determine the most suitable systems and the
optimal conditions for which p-wave superfluidity due to
an induced interaction can be realized.
Model.—We consider a three-dimensional system con-

sisting of spin-polarized, noninteracting fermions of mass
mF and density nF, mixed with bosons of mass mB and
density nB. The Bose gas is weakly interacting so that it can
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be described by Bogoliubov theory well below the critical
temperature for Bose-Einstein condensation. At temper-
ature T ¼ β−1 (ℏ ¼ kB ¼ 1), the properties of the mixture
are described by the partition function

Z ¼
Z

Dðā; aÞ
Z

Dðγ�; γÞe−ðS0FþSBþSintÞ; ð1Þ

where (a, ā) and (γ, γ�) are Grassmann and complex fields
for the fermions and Bogoliubov phonons, respectively.
The action for the free fermions is

S0F ¼
X
p;n

āðpÞð−iωn þ ξpÞaðpÞ; ð2Þ

where p≡ðp;iωnÞ, ωn¼ð2nþ1ÞπT is a Fermi Matsubara
frequency, and ξp ¼ p2=2mF − μF is the free fermion
dispersion measured from the chemical potential μF of
the Fermi gas. The action for the Bose gas is given by

SB ¼
X
q≠0;ν

γ�ðqÞð−iων þ EqÞγðqÞ; ð3Þ

where q≡ ðq; iωνÞ, ων ¼ 2νπT is a Bose Matsubara
frequency, and Eq¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εqðεqþ2gBnBÞ

p
is the Bogoliubov

spectrum. Here εq ¼ q2=2mB and gB ¼ 4πaB=mB, where
aB is the boson scattering length. Finally the fermion-boson
interaction is

Sint ¼ g
ffiffiffiffiffiffi
nB
βV

r X
q≠0;ν

ffiffiffiffiffiffi
εq
Eq

r
½γ�ðqÞ þ γð−qÞ�ρðqÞ; ð4Þ

where V is the system volume, ρðq; iωνÞ≡P
p0;n āðp0 − q;

iωn − iωνÞaðp0; iωnÞ, and g ¼ 2πaFB=mr is the boson-
fermion interaction. Here mr ¼ mFmB=ðmF þmBÞ is the
reduced mass and aFB is the fermion-boson scattering
length. In Eq. (4) we did not include terms describing the
scattering between fermions and uncondensed bosons.
Such terms can be neglected for the relatively weak
boson-fermion interactions considered here [29,30], i.e.,
kFjaFBj≲ 1.
The Bogoliubov fields in Eq. (1) can be integrated out,

yielding an effective action for the fermions [7,8,31]

SFðā; aÞ ¼ S0Fðā; aÞ þ
1

2βV

X
q;ν

V indðqÞρ̄ðqÞρðqÞ; ð5Þ

where V ind is the phonon-mediated interaction given by

V indðq; iωνÞ ¼ g2
nB
mB

q2

ðiωνÞ2 − E2
q
: ð6Þ

This interaction corresponds to the exchange of one
Bogoliubov mode between the fermions, treating the

boson-fermion scattering as energy independent, which
is valid for kFjaFBj≲ 1. In the static case ων ¼ 0, Eq. (6)
is the Fourier transform of the well-known Yukawa
interaction with a range given by the BEC coherence length
ξB ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πnBaB

p
.

Eliashberg theory.—In order to describe pairing between
fermions due to the mediated interaction [Eq. (6)] with a
high critical temperature Tc, we use the Eliashberg theory
that retains the full energy-momentum dependence of the
pairing field and the diagonal self-energy. This framework
has proven accurate for strong coupling electronic super-
conductors where pairing is mediated by phonons [32],
which is quite similar to the case at hand.
The Eliashberg theory determines the normal and anoma-

lous Green’s functions, defined as GðpÞ≡ −haðpÞāðpÞi,
FðpÞ≡ −haðpÞað−pÞi, and F†ðpÞ≡ −hāð−pÞāðpÞi,
where the expectation values are time ordered. The
Green’s functions obey a generalized Dyson equation shown
diagrammatically in Fig. 1, which is solved by

GðpÞ ¼ iωn þ ξp þ Σð−pÞ
½iωn − AðpÞ�2 − ½ξp þ SðpÞ�2 − jΔðpÞj2 ð7Þ

and

FðpÞ ¼ ΔðpÞ
½iωn − AðpÞ�2 − ½ξp þ SðpÞ�2 − jΔðpÞj2 ; ð8Þ

with F†ðp; iωnÞ ¼ Fðp;−iωnÞ�. Here ΣðpÞ is the normal
self-energy, where SðpÞ ¼ ½ΣðpÞ þ Σð−pÞ�=2 and AðpÞ ¼
½ΣðpÞ − Σð−pÞ�=2 are its real and imaginary parts, and
ΔðpÞ is the anomalous self-energy. The latter is essentially a
momentum and frequency dependent pairing gap. The self-
energies are evaluated using a generalized Hartree-Fock
approximation illustrated in Fig. 1, where the Hartree term is
absorbed into a redefinition of the chemical potential μF.
This gives

ΣðpÞ ¼ −
1

βV

X
p0

V indðp − p0ÞGðp0Þ ð9Þ

for the normal Fock self-energy and

FIG. 1. Diagrammatic structure of the Eliashberg theory.
The thin line represents the noninteracting Green’s function
G0ðp; iωnÞ ¼ 1=ðiωn − ξpÞ and the wavy curve represents the
mediated interaction V indðq; iωνÞ.
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ΔðpÞ ¼ −
1

βV

X
p0

Vindðp − p0ÞFðp0Þ; ð10Þ

for the anomalous Fock self-energy. We solve these equa-
tions self-consistently for fixed fermion density

nF ¼ 1

βV

X
p;n

Gðp; iωnÞeiωn0
þ
: ð11Þ

A derivation of the Eliashberg equations using the path
integral is given in the Supplemental Material [33].
The pairing gap must be odd in momentum due to the

Pauli principle for identical fermions, and it can therefore
be expanded in spherical harmonics Ylmðp̂Þ with
l ¼ 1; 3;…. Since Tc is determined from the linearized
forms of Eqs. (9)–(11), which do not couple different (l,m)
channels, we use the ðl; mÞ ¼ ð1; 1Þ (p-wave) ansatz
Δðp; iωnÞ ¼ Δ11ðjpj; iωnÞY11ðp̂Þ, as this yields the highest
Tc. The normal self-energy ΣðpÞ is spherically symmetric
at Tc where there is no pairing to break this symmetry, and
so we can write Σðp; iωnÞ ¼ Σ00ðjpj; iωnÞY00ðp̂Þ.
In practice, we determine Tc by first evaluating the normal

self-energy self-consistently assuming no pairing. Then we
iterate Eqs. (9)–(11) with a finite but very small initial value
of the gap function. A decreasing (increasing) gap function
under iteration indicates that the given temperature is above
(below) Tc. The details of the numerical procedure are given
in the Supplemental Material [33].
Note that we neglect the effects of the fermions on the

bosons and assume a temperature well below the critical
temperature of the BEC, so that it can be treated using
T ¼ 0 Bogoliubov theory. This is accurate if the boson
density is much larger than that of the fermions, which is
often the case experimentally. The effects of a Fermi gas on
a BEC were considered in Ref. [34].
Qualitative analysis.—There are four physical parame-

ters that can be independently controlled in this system,
namely the Fermi-Bose mass ratio α≡mF=mB, density
ratio nB=nF, scattering length aBF, and the boson scattering
length aB. The critical temperature Tc is determined by
three dimensionless quantities formed out of these four
parameters. The first two are the strength and the range
of the mediated interaction, which can be estimated by
considering its zero frequency component

V indðq; 0Þ ¼ −λ
ϵF=k3F

ðq=kFÞ2 þ 2=ðkFξBÞ2
: ð12Þ

Here, ϵF ¼ k2F=2mF is the Fermi energy of the system with
kF ¼ ð6π2nFÞ1=3. The dimensionless quantity

λ ¼ 16

3
ðkFaFBÞ2

nB
nF

ð1þ αÞð1þ 1=αÞ ð13Þ

measures the strength while

kFξB ¼
ffiffiffiffiffiffi
3π

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nF

nBkFaB

r
ð14Þ

characterizes the range of the mediated interaction. It is
intuitively clear that increasing the strength and range of the
pairing interaction will raise Tc. The third dimensionless
quantity is the ratio of the speed of sound in BEC
cB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gBnB=mB

p
and the Fermi velocity vF ¼ kF=mF,

cB
vF

¼
ffiffiffiffiffiffi
2

3π

r
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnB=nFÞðkFaBÞ

p
: ð15Þ

The larger this ratio is, the smaller the effects of retardation
will be, and the higher the Tc will become.
A few comments are in order. First, Eqs. (13)–(15) show

that when the mass ratio α increases, the interaction
strength increases and its range is constant, while retarda-
tion effects decrease. This indicates that using a mixture
of light bosons and heavy fermions favors a high Tc, which
we shall demonstrate explicitly below. Second, increasing
nB=nF will increase the speed of sound in the BEC and the
interaction strength, but decrease its range. Likewise,
increasing kFaB will increase the BEC speed of sound
but decrease the interaction range. The competition
between these effects makes the dependence of Tc on
nB=nF and kFaB a priori nontrivial. Finally, we cannot
freely increase the scattering length aFB, as the system will
phase separate (collapse) for sufficiently positive (negative)
aFB. Within mean-field theory, the condition for avoiding
such instabilities is [35]

ðkFaFBÞ2 ≤
2π

ð1þ αÞð1þ 1=αÞ kFaB: ð16Þ

We emphasize however, that Eq. (16) most likely under-
estimates the region of stability for trapped Bose-Fermi
mixtures, since it is based on mean-field theory and is
derived for a homogeneous system ignoring finite size
effects. Indeed, two recent experiments show that trapped
Bose-Fermi mixtures are stable far beyond the condition
given by Eq. (16), both for attractive [18] and repulsive
interactions [19]. Phase separation for trapped Bose-Fermi
mixtures was considered in Refs. [36–38].
Numerical results.—We now present numerical results

for Tc for experimentally relevant Bose-Fermi mixtures.
Since the BEC density is typically much higher than that of
the fermions, we take nB=nF ¼ 5 for all the calculations.
Consider first the 7Li-173Yb mixture, which has been

experimentally realized [20]. It corresponds to a mass ratio
α ¼ 173=7 as high as currently possible with present
atomic gas experiments, and we expect it to be the most
favorable for achieving a high Tc. We plot in Fig. 2
the critical temperature as a function of the fermion-
boson interaction strength kFaFB obtained from the full
Eliashberg theory using the boson-boson interaction
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strengths kFaB ¼ 0.1 and kFaB ¼ 0.02. The critical tem-
perature increases with kFaFB as expected. Taking Tc=TF ¼
0.1 as a conservative estimate for what can be realized
experimentally, this is reached at the relatively weak
coupling strengths kFjaFBj ≃ 0.155 for kFaB ¼ 0.02 and
kFjaFBj ≃ 0.215 for kFaB ¼ 0.1, where our theory is
reliable. The critical temperature is higher for kFaB ¼
0.02 compared to kFaB ¼ 0.1, showing that when kFaB
decreases, the increase in interaction range more than
compensates for the increasing retardation effects.
For comparison, we also plot in Fig. 2 the critical

temperature for kFaB ¼ 0.02 obtained when both retarda-
tion effects and the normal self-energy are neglected; i.e.,
we use the induced interaction evaluated at zero frequency
and set ΣðpÞ ¼ 0. Such a static theory significantly over-
estimates Tc, which for this particular mixture is mainly
because it neglects retardation effects. This can be seen
when we include retardation but still neglect the normal
self-energy ΣðpÞ, the resulting Tc largely agrees with that
obtained from the full theory, as shown in Fig. 2. Note that
our results are independent of the sign of aFB, since the
induced interaction is second order in aFB.
Equation (16) predicts that a homogeneous 7Li-173Yb

mixture will collapse or phase separate for kFjaFBj ≳ 0.069
for kFaB ¼ 0.02 and kFjaFBj≳ 0.153 for kFaB ¼ 0.1.
Taking into account that trapped mixtures are stable well
beyond these critical values, we conclude from Fig. 2 that
a 7Li-173Yb mixture is a promising platform for realizing a
p-wave superfluid caused by an induced interaction.
Consider next the two experimentally relevant mixtures

23Na-40K [15] and 87Rb-40K [12–14], which have almost the
inverse mass ratios. In Fig. 3, we plot Tc for kFaB ¼ 0.02
obtained using three theoretical approaches: (i) the full

Eliashberg theory, (ii) including retardation but neglecting
the normal self-energy, and (iii) neglecting both retardation
by using the zero frequency induced interaction and the
normal self-energy. The critical temperatures of the two
mixtures are almost the same when both retardation and
self-energy effects are ignored. This can be understood
from Eq. (13), since the dimensionless interaction is nearly
the same for the two mixtures. However, Tc is much higher
for the 23Na-40K mixture, when retardation effects are
included. This is because retardation is less important
for light bosons due to their higher speed of sound, see
Eq. (15). Finally, Fig. 3 shows that the normal self-energy
ΣðpÞ also suppresses Tc most for the 87Rb-40Kmixture. The
reason is that excitations in the BEC cost less energy for
heavy bosons, which leads to larger self-energy effects. The
fact that the 23Na-40K mixture has a much higher Tc than
the 87Rb-40K mixture in the full Eliashberg theory nicely
illustrates a main result of the present Letter: a mixture
of light bosons and heavy fermions is more favorable
to achieve a high Tc. This is further corroborated by the
fact that, according to Eq. (16), the two mixtures become
unstable almost at the same coupling strength, kFjaFBj ¼
0.171 for 23Na-40K and kFjaFBj ¼ 0.165 for 87Rb-40K.
In order to investigate the effects of the boson-boson

interaction, we plot in Fig. 4 the critical temperature as a
function of kFaB for the 7Li-173Yb, 23Na-40K, and 7Li-6Li
mixtures [9,15,20]. For all three mixtures, Tc decreases
with kFaB. Thus, although the sound velocity of the BEC
increases with kFaB thereby reducing retardation effects,
this effect is overwhelmed by the corresponding reduction
in the interaction range, so that the net effect is a
suppression of Tc with increasing kFaB. The suppression
is largest for the 7Li-173Yb mixture, since retardation effects
are already small for light bosons so that a decrease in the
interaction range has a larger relative effect.

FIG. 2. Critical temperature for p-wave pairing in the 7Li-173Yb
mixture as a function of Fermi-Bose scattering length kFaFB. The
dynamic and static labels refer to when the normal self-energy,
and to when both the normal self-energy and retardation effects
are ignored, respectively.

FIG. 3. Critical temperature for the 23Na-40K and 87Rb-40K
mixtures as a function of kFaFB for kFaB ¼ 0.02. The static and
dynamic labels refer to the same theories as in Fig. 2.
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Finally, we plot in the inset of Fig. 4 the contact
C ¼ limk→∞ha†kakik4 [39–41] for a 23Na-40K mixture with
kFaB ¼ 0.1 and temperature T ¼ 0.125TF. It increases
with kFaBF as expected. Since the Fock self-energy,
Eq. (9) includes all dominant second order diagrams for
a fermion interacting with a BEC [30,42], our theory
recovers the exact second order result [33]

C ¼ ð2kFaFBÞ2nB
9π2nF

k4F: ð17Þ

We see from the inset of Fig. 4 that the numerical results
indeed approach Eq. (17) for kFaFB ≪ 1 thereby illustrat-
ing the accuracy of our approach.
Experimental realization.—As mentioned in the intro-

duction, a wide range of atomic Bose-Fermi mixtures have
already been realized experimentally [9–20]. These experi-
ments are inherently inhomogeneous due to a harmonic
trap, and the observability of the superfluid state requires
that the spatial size of the phase is sufficiently large
compared to the coherence length of the Cooper pairs.
Recent experiments show that trapped Bose-Fermi mix-
tures have a significant overlap region between the atomic
species over a large range of interaction strengths [18,19].
This implies that the p-wave superfluid should occupy a
sizeable region in the trap. For the detection of the super-
fluid state, one could observe the formation of vortices
under rotation [43], measure the reduction of the moment of
inertia [44], or directly probe the pairing gap by local Bragg
spectroscopy [45].
Conclusions.—We presented a strong coupling theory

for the p-wave pairing of spin polarized fermions in a BEC,
which takes into account the full frequency and momentum
dependence of the induced interaction between the fer-
mions caused by the exchange of phonons in the BEC.

Focusing on experimentally relevant systems, we calcu-
lated the critical temperature varying the boson-boson and
boson-fermion interaction strengths, as well as their mass
ratio. Both retardation as well as self-energy effects were
shown to significantly affect Tc. Our systematic analysis
allowed us to identity the most suitable system for which
the p-wave superfluidity can be achieved. In particular, we
showed that it is within experimental reach using a mixture
of light bosons and heavy fermions. The p-wave superfluid
can be considered as the many-body limit of a gas of
bi-polarons [46], where the size of the bi-polarons is much
larger than their average distance. This opens up the
intriguing possibility to study the BEC-BCS crossover in
an entirely new setting by varying the fermion density.
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