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A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge
and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a
surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest
mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The
validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense
extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is
found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally
differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the
semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.
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Triggered by rapid technological advances [1–4] and
new infrastructure projects [5] there is an increased interest
in the description of quantum systems exposed to super-
intense laser fields. In spite of the importance to address the
relativistic regime [6] there are comparatively few such
studies reported in the literature, probably due to the very
nature of the time-dependent Dirac equation which is
notoriously hard to solve.
Several issues make the Dirac equation tougher to

solve numerically than its nonrelativistic counterpart, the
Schrödinger equation. The fact that the numerical space is
increased by a factor of 4 owing to the four components
of the Dirac wave function, as opposed to a scalar wave
function in the nonrelativistic case, is but the least of
problems. The existence of a negative energy continuum is
harder to tackle—for several reasons [7,8]. First, many
numerical time integration techniques require a numerical
time step restricted by the inverse of the rest-mass energy of
the particle at hand, thus rendering calculations for realistic
laser pulses infeasible. Second, spurious states may con-
taminate the spectrum of the numerical representation of
the Hamiltonian.
Another, more subtle complication is the fact that

inclusion of the spatial dependence of the external field,
which is imperative for ultrastrong fields [9], is harder to
achieve in a consistent manner for the Dirac equation than
is the case for the Schrödinger equation [10]. While this
particular challenge to a large extent has been lifted by
introducing the so-called propagation gauge to the Dirac
equation [11–13], a formulation of the Schrödinger
equation which allows us to include relativistic effects is
still desirable, albeit seemingly too much to hope for.

However, as it turns out, the apparently naive approach of
simply substituting the rest mass with the relativistic mass
of the electron, does in fact, to a surprisingly large degree,
accommodate for relativistic effects induced by external
electromagnetic fields.
In the following, we outline the theoretical framework.

The semirelativistic interaction is derived in three ways:
first directly from the classical Hamiltonian function, then
from the Dirac equation, and, finally, from the Klein-
Gordon equation. While the full spatial dependence of the
external field is included in the first and last approach, the
derivation from the Dirac Hamiltonian is subject to the so-
called long wavelength approximation [12,14], which is
not to be confused with the dipole approximation. Our
numerical results, comparing the fully relativistic and
semirelativistic approaches, are then presented. Here, we
have also included results obtained from nonrelativistic
calculations in order to demonstrate that the studied cases
indeed feature relativistic effects. Finally, we present our
conclusions. Atomic units are used where stated explicitly.
First, we will take the following relativistic Hamiltonian

for a particle of charge q ¼ −e as our starting point:

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

q
−mc2 − eφðrÞ; ð1Þ

which would act on a scalar wave function, as opposed to a
bispinor in the Dirac case. For an atom in the absence of
any external field, the scalar potential φ is simply provided
by the Coulomb potential V ¼ −eφ.
Of course, both the Dirac and Klein-Gordon formula-

tions are closely related to the above Hamiltonian. The
various ways we present for deriving the semirelativistic
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form from these formulations are, however, rather different.
In all cases it is crucial that the interaction is formulated
within the propagation gauge—for reasons which will be
transparent shortly.
We take our external field A to be linearly polarized and

satisfying the Coulomb gauge restriction,

A ¼ AðηÞÂ with η ¼ ωt − k · r; ð2Þ

where the unit vectors k̂ and Â are orthogonal. The
propagation gauge formulation of the interaction is
obtained from the usual minimal coupling formulation
by imposing the following gauge transformation [11–13]:

A → Aþ∇ξ and φ → φ −
∂
∂t ξ; with

ξðηÞ ¼ −
e

2mω

Z
η

−∞
½Aðη0Þ�2dη0: ð3Þ

The corresponding kinetic momentum is now

d ¼ pþ eAþ e2

2mc
A2k̂: ð4Þ

This momentum shift is such that a free, nonquantum
mechanical electron starting at zero momentum, remains at
zero momentum. This applies both to the polarization
direction and the propagation direction of the external
field, not only to the polarization direction, as is the case in
the usual minimal coupling formulation.
By introducing the interaction with the external field via

minimal coupling, p → pþ eA, and then imposing the
gauge transformation Eq. (3), the Hamiltonian of Eq. (1)
takes the form

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ d2c2

p
−
�
mþ e2

2mc2
A2

�
c2 þ V

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c4 þ q2c2

q
− μc2 þ V; ð5Þ

where we have introduced

μ ¼ m

�
1þ e2

2m2c2
A2

�
and ð6Þ

q2 ¼ p2 þ 2eA · pþ e2

2mc
fA2; k̂ · pg: ð7Þ

The η-dependent effective mass μ, which is not to be
confused with the reduced mass, coincides with the time-
dependent relativistic mass of a free, classical electron in
the field initially at rest [15]. We now expand the square
root in a manner which ensures hermicity term by term:

H ¼ V þ c2

2

 
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ−2

q2

c2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

c2
μ−2

s
μ

!
− μc2

¼ V þ 1

2

��
1

2μ
; q2
�
−
�

1

8μc2
; q2μ−2q2

�
þ � � �

�
: ð8Þ

Truncation at lowest order yields

H ≈
1

2

�
1

2μ
; p2

�
þ e
μ
A · pþ e2

8mc

�
1

μ
; fA2; k̂ · pg

�
þ V;

ð9Þ
where the anticommutators persist due to the fact that the
relativistic mass μ is spatially dependent and, hence, does
not commute with the momentum operator.
We argue that the leading order term in Eq. (8) indeed

includes most of the relativistic correction to the ionization
probability. Now, one may rightfully question how an
expansion of the kinetic energy can meaningfully be
truncated at lowest order in p2 in the relativistic region.
This is precisely why it is crucial that the interaction is
formulated in the propagation gauge. Note that for an initial
wave packet with hpi ¼ 0 in the absence of any Coulomb
potential, the expectation value of the canonical momentum
will remain identical to zero at all times in the propagation
gauge. In the presence of the Coulomb potential this is,
of course, no longer true, and one can only assume that
hpi ≃ 0. However, in the strong field limit, the Coulomb
potential eventually represents only a small perturbation,
with the result that one can safely neglect higher order
terms in the momentum operator with respect to the leading
order term. Thus, we expect that the validity of the
Hamiltonian of Eq. (9) in fact will increase with increasing
intensity. This is also reflected in the fact that the expansion
parameters in Eq. (8), i.e., μ−2q2=c2 and q2=c2 · μ−2,
decrease with increasing field strength.
In the present approach, relativistic corrections to the

Coulomb interaction and spin are not accounted for.
However, we do expect it to correctly accommodate for
transient relativistic effects induced by the external laser field
as long as the probability of real pair production is negligible.
The expansion of Eq. (8) becomes simpler when q2 and μ

commute. This is the case when Eq. (5) is taken to be a
classical function rather than an operator. It is also the case
within the long wavelength approximation (LWA), in
which the spatial dependence of the vector potential A
and, thus, also in μ is neglected:

H ¼ V þ q2

2μ
−

q4

8c2μ3
þ � � � : ð10Þ

If we, again, retain only the leading term in kinetic energy,
we obtain

H ≈
q2

2μ
þ V ¼ p2

2μ
þ e
μ
A · pþ e2

2μmc
A2k̂ · pþ V: ð11Þ
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We emphasize that the LWA is far less restrictive than the
much applied dipole approximation. While the assumption
of a homogeneous vector potential imposed within the
propagation gauge does not distort the leading magnetic
interaction, no magnetic interaction at all is included with a
homogeneous vector potential imposed within the minimal
coupling, or velocity gauge, formulation.
The Hamiltonian equations (9) and (11) coincide with

the nonrelativistic Schrödinger Hamiltonian in the propa-
gation gauge upon the substitution μ → m. The dynamics
corresponding to these Hamiltonians is thus the same as
that of the nonrelativistic equations, albeit with the
increased effective mass that the electron acquires in the
field rather than the bare rest mass. Note, however, that
the opposite substitution, i.e., m → μ in the nonrelativistic
Schrödinger Hamiltonian, would not provide Eq. (11) due
to the remaining dependence on the electron rest mass in
the third term in Eqs. (9) and (11). This term accounts for
the leading magnetic interaction in the strong field limit and
its rest-mass dependence originates from the momentum
induced in the direction of the electromagnetic field, i.e.,
the third term on the right-hand side of Eq. (4).
It is worth mentioning that the interaction form of

Eq. (11) may rather easily be transformed into other more
familiar forms, analogous to, e.g., the velocity gauge, the
length gauge, or the Kramers-Henneberger frame [16,17].
Next, we will outline how the above Hamiltonian may be

derived from the Dirac equation. In propagation gauge form
it reads [13]

iℏ
d
dt

Ψ ¼ HΨ with

H ¼ cα · dþmc2β þ
�
V −

e2

2m
A2

�
14; ð12Þ

where d is defined in Eq. (4). The wave functionΨ now is a
four-component bispinor,

Ψ ¼
�Φ
X

�
: ð13Þ

The upper spinor Φ is typically referred to as the large
component for states with positive energy, while the lower
spinor X is coined the small component. We apply the usual
formulation in terms of Pauli matrices σ and identity
matrices for the α and β matrices.
In a classic paper [18] Foldy andWouthuysen showed how

theDirac equation for a free fermionmay be transformed in a
manner which decouples the large and the small component.
If we, within the LWA, generalize their transformation
by replacing the canonical momentum p with the time-
dependent kinetic momentum d, the transformation reads

T ¼ eS with S ¼ 1

2d
tan−1

�
d
mc

�
βα · d; ð14Þ

where d, which is defined in Eq. (4), depends explicitly on
the external fieldA. With this, the Dirac Hamiltonian (12) is
cast into

H0 ¼ eSHe−S þ iℏ
d
dt

S

¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ d2c2

p
þ eSVe−S −

e2

2m
A2 þ i

ℏ
2
βα · λ;

ð15Þ

where λ ¼ d
dt

d
d
tan−1

�
d
mc

�
: ð16Þ

This form contains two nondiagonal terms: the transformed
Coulomb potential and the last term, which originates from
the time dependence of the transformation. If we disregard
relativistic corrections to the Coulomb potential and keep
only the diagonal leading term,

eSVe−S ≈ V; ð17Þ
we neglect contributions such as the Darwin term and spin-
orbit coupling. This should, however, be admissible for
cases in which the dominant relativistic effects are the ones
induced by the external field A.
The last term in Eq. (15) is negligible in most cases. In

order to see this, we rewrite the Dirac equation, Eq. (12),
with the transformed Hamiltonian Eq. (15) in terms of the
two components:

iℏ
d
dt

�Φ
X

�
¼ H0

�Φ
X

�
; with

H0 ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2c4 þ q2c2
p

i ℏ
2
σ · λ

−i ℏ
2
σ · λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c4 þ q2c2

p
!

þ ðV − μc2Þ14: ð18Þ
Here, we have shifted the energy downwards by mc2 and
used the same steps as in connection with Eq. (5). We now
approximate�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c4 þ q2c2

q
− μc2 þ V − i

d
dt

�
X ≈ −2 μc2X; ð19Þ

i.e., for the small component we neglect higher order terms
in q2, the Coulomb potential and the time derivative upon
comparison with the dominating “dynamical mass energy”
μc2. Note, however, that the Coulomb potential in Eq. (18)
is still included to leading order.
With this, Eq. (18) decouples and we are left with the

following effective Hamiltonian for the large componentΦ:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2c4 þ q2c2

q
− μc2 þ V þ ℏ2

8μc2
λ2: ð20Þ

Here, we notice that the three first terms are identical to the
right-hand side of Eq. (5). The remaining term, ∼λ2, is to
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leading order a purely time-dependent one, which can be
removed by a phase transformation. The next to leading
term is of order m−4c−5 and thus the last term of Eq. (20)
may safely be neglected in view of the approximations
already made when using Eq. (19). With this the
Hamiltonian of Eq. (5) is reproduced for the large compo-
nent Φ, albeit within the LWA. We emphasize that the
equivalence with the scalar Hamiltonian of Eq. (5) implies
the neglect of all spin-dependent interactions.
Finally, we will outline how Eq. (5) may be obtained

from the Klein-Gordon equation. Within the propagation
gauge, it takes on the form

�
−ℏ2

d2

dt2
þ iℏ

d
dt

K þ Kiℏ
d
dt

�
Ψ ¼ LΨ; ð21Þ

where we have defined the operators

K ¼ mc2 þ e2

2m
A2 − V and ð22Þ

L ¼ p2c2 þ
�
eAþ e2

2mc
A2k̂

�
· pc2

þ p ·

�
eAþ e2

2mc
A2k̂

�
c2 þ V

�
2mc2 þ e2

m
A2 − V

�
;

ð23Þ

and, again, shifted the energy downwards by the rest-mass
energy mc2. By insisting that the Hamiltonian H equals
iℏd=dt, we arrive at

ðH2 þHK þ KH − LÞΨ ¼ 0: ð24Þ

The operator on the left-hand side above is identical to the
zero operator if and only if

H ¼ −K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ L

p
: ð25Þ

Note that this Hamiltonian, just like the Dirac Hamiltonian,
provides both a positive and a negative energy spectrum.
By selecting the form corresponding to positive energies
we, again, arrive at Eq. (5), as may be verified by
inspection.
Having derived a Schrödinger-like equation for the

relativistic laser-matter interactions, we now aim at dem-
onstrating its capabilities by performing a calculation on a
concrete time-dependent problem and compare its result
with the exact one as obtained by the Dirac equation.
To this end, we will investigate the following scenario:
A hydrogen atom with the electron initially prepared in the
ground state is exposed to a laser pulse, defined as

AðηÞ ¼ AðηÞẑ ¼ E0

ω
fðηÞ sinðηþ ϕÞẑ; ð26Þ

where the envelope function f is chosen to be a sine
squared.
Both the Dirac equation and the Schrödinger equation

are solved within the LWA. In the latter case, calculations
have been performed both with and without the relativistic
mass shift included in order to see whether this shift can
accommodate for relativistic effects. For details on the
implementation, see Refs. [10,13]. The validity of the LWA
was demonstrated explicitly in the latter.
The results for a 15 cycle laser pulse with photon

energies in the extreme ultraviolet region are shown in
Fig. 1. We find relativistic corrections of about 0.5% in the
ionization probability. We see that the bulk of the correction
is indeed provided by Eq. (11), while the next order
corrections from Eq. (10) in fact vanishes beyond maxi-
mum field strengths E0 of about 100 a.u. We have also
verified numerically that the spin-orbit coupling, which
was neglected in Eq. (17), is indeed unimportant.
Beyond the validity of the LWA, we have performed

classical trajectory Monte Carlo simulations; i.e., we have
resolved the dynamics according to a classical Hamiltonian
function for a microcanonical ensemble of initial states
corresponding to the ground state energy and estimated
ionization probabilities by analyzing the outcome sta-
tistically [19,20]. This has been done for the same three
cases as above: fully relativistic, fully nonrelativistic,
and semirelativistic. In the semirelativistic case, our
Hamiltonian function takes the same form as in
Eq. (11), albeit with full spatial dependence in A and μ
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FIG. 1. A hydrogen atom initially prepared in the ground state is
exposed to a 15 cycle laser pulse with a central frequency of ω ¼
3.5 a:u: The peak field strength E0 ranges from 50 to 130 a.u. The
black curve is the difference in ionization probability predicted
by the fully relativistic Dirac equation and the nonrelativistic
Schrödinger equation, within the long wavelength approximation.
The red diamonds show the corresponding difference for results
obtained using the semirelativistic approachwith the kinetic energy
truncated at lowest order, Eq. (11), while the green circles are
obtained with the next to leading order correction in Eq. (10)
included. The inset shows the total ionization probability.
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in this case. In Fig. 2 we present ionization probabilities
obtained from a calculation with a central frequency of
ω ¼ 50 a:u:, which corresponds to photons in the soft x-ray
region. As we can see, the semirelativistic results are
virtually indistinguishable from the fully relativistic ones,
thus providing strong evidence of the validity of the present
approach.
Additionally, we have calculated classical trajectories for

electrons, initially at rest, only subject to the interaction
with the external laser field, i.e., without any Coulomb
interaction. This was done for a wide range of laser
frequencies ω, ranging from the infrared region via the
optical to the x-ray region. The same three approaches as
above were applied. While the nonrelativistic Hamiltonian
produced results deviating substantially from the fully
relativistic ones, the semirelativistic formalism consistently
gave trajectories virtually indistinguishable from the fully
relativistic ones.
In conclusion, we have demonstrated that by substituting

the mass with the relativistic mass in the adequate manner,
the validity of the Schrödinger equation is extended into the
relativistic region. The validity of the approach has been
demonstrated by direct comparison with fully relativistic
calculations, providing quantitative agreement. This high
degree of accuracy is a surprising finding, and a very useful
one indeed: within the long wavelength approximation,
adjustment of the mass is easily implemented, thus extend-
ing the validity of theoretical studies considerably with
little extra effort when it comes to implementation and
numerics. The coincidence between the fully relativistic
and the semirelativistic calculations shows that the

relativistic corrections may be attributed to the increased
inertia induced by the external laser field.
As a next step, a derivation based on the Dirac equation

beyond the long wavelength approximation will, hopefully,
provide a relativistic Hamiltonian of Schrödinger type
which also features spin dynamics.
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FIG. 2. The ionization probability as a function of peak electric
field strength E0, obtained by classical trajectory Monte Carlo
calculations. The atom has been exposed to a 15 cycle laser pulse
with central frequency ω ¼ 50 a:u: The calculations have been
done both fully relativistically, fully nonrelativistically and by
using the semirelativistic Hamiltonian function of Eq. (11) with
the full spatial dependence of the laser field included.
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