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Is the graviton massless? This problem was addressed in the literature at a phenomenological level, using
modified dispersion relations for gravitational waves, in linearized calculations around flat space. Here, we
perform a detailed analysis of the gravitational waveform produced when a small particle plunges or
inspirals into a large nonspinning black hole. Our results should presumably also describe the gravitational
collapse to black holes and explosive events such as supernovae. In the context of a theory with massive
gravitons and screening, merging objects up to 1 Gpc away or collapsing stars in the nearby galaxy may be
used to constrain the mass of the graviton to be smaller than ∼10−23 eV, with low-frequency detectors. Our
results suggest that the absence of dipolar gravitational waves from black hole binaries may be used to rule
out entirely such theories.
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Introduction.—General relativity (GR) is special and
unique in a very precise mathematical sense [1,2].
Nevertheless, several arguments suggest that such an elegant
theory cannot easily accommodate neither the ultraviolet nor
the infrared description of the universe. Simultaneously,
observations of large-scale phenomena indicate that either
the matter sector or the gravitational interaction requires a
better understanding. In other words, extensions of GR are
welcome. One of the possible extensions draws inspiration
from the standard model of particle physics and consists in
allowing for a massive graviton [2–5].
Bounds on such theories can be imposed via gravitational-

wave (GW) emission and propagation mechanisms. These
include the following: (i) Modified dispersion relations for
GWs, assuming that their generation is as in GR [6–8].
(ii) The spin down of black holes (BHs), caused by super-
radiant instabilities [9]. (iii) Changes in the orbital period of
binary pulsars, caused by a different energy flux [10].
Other mechanisms may also help in bounding the

graviton mass, such as modifications of the GW memory
effect [11]. There are no constraints using directly the
measured properties of GWs, without any assumption on
the production mechanism. Our main concern here is
precisely to compute the gravitational waveform and fluxes

from the merger of two compact objects, using the strong-
field regime of massive gravity theories. We consider the
ghost-free theory describing two interacting spin-2 fields
described in detail in the Supplemental Material [12].
Following all observational evidence thus far, we con-

sider only BHs which are as similar as possible to those in
GR; in particular, we study Schwarzschild BHs which are
also exact solutions of massive bi-gravity theories. We
focus on the truly unique features of massive gravity
theories: the extra polarizations with respect to GR and
their signatures on the GW emission. We thus consider
mergers of extreme-mass ratio objects in which the massive
one is a Schwarzschild BH. We will show that the extra
degrees of freedom give rise to substantially different GW
signals, even when the underlying backgrounds are exactly
the same.
Throughout this Letter, we use geometrized units, in

which G ¼ c ¼ 1.
Formalism and master equations.—In our framework, a

small point particle is orbiting, or merging with, a massive
Schwarzschild BH of mass M. This system may model the
merger of a neutron star with a stellar-mass or a super-
massive BH, but it may well describe qualitatively the
merger of two equal-mass BHs as well. In fact, the lesson
from the two-body problem in GR is that perturbation
theory is able to account for this process even at a
quantitative level [17]. The point particle moves on a
spacetime geodesic yμpðτÞ ¼ (tpðτÞ; rpðτÞ; θpðτÞ;φpðτÞ),
with τ being the test body proper time. The particle is
taken to be pointlike and described by the stress-energy
tensor
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Tμν ¼ mp

Z
ð−gÞ1=2uμuνδð4Þðxβ − yβpÞdτ; ð1Þ

where mp is the rest mass of the test particle and uμ ¼
dyμp=dτ its four velocity. The point particle stress slightly
disturbs the background geometry ḡμν, f̄μν (the theory has
two metrics) describing the BH and a graviton of mass μ.
The latter is given by a specific combination of the coupling
parameters of the theory [9]. Here, we study backgrounds
for which the two metrics ḡμν and f̄μν are proportional,
leading to geometries which coincide with those of GR [18]
[see the Supplemental Material [12] and Refs. [5,9,18–21]].
The stress energy tensor contributes with fluctuations

ðδgμν; δfμνÞ, which we analyze in tensor spherical harmon-
ics and Fourier decompose. Technical details are left for the
Supplemental Material [12].
Head-on collisions: Hereafter, we consider two proto-

typical dynamical processes: head-on collisions and pure
equatorial motion corresponding to quasicircular inspirals
(once radiation reaction is taken into account). The com-
plete expressions for the source components are shown in
the Supplemental Material [12]. For radial motion, axial
perturbations are not excited. The multipolar expansion
describes only polar-type perturbations with l ≥ 0. Of
these, the l ≥ 2 equations contain small μ-dependent
corrections to the GR expressions. We do not consider
these any further [such corrections were studied in some
detail in the weak-field, slow-motion limit elsewhere [10] ]
and focus on the truly unique properties of massive gravity:
the presence of new degrees of freedom, described by the
l ¼ 0 and l ¼ 1 modes.
For the monopole, l ¼ 0 mode, the number of pertur-

bation functions reduces to the four metric components
ðH0; H1; H2; KÞ [see the Supplemental Material [12] and
Ref. [9]]. Through the following transformation

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4μ2M þ μ4r3 þ 2μ2rþ 4rω2

p
r5=2

φ0; ð2Þ

we obtain a single wave equation for φ0

d2φ0

dr2⋆
þ ½ω2 − Vl¼0

pol ðr;ωÞ�φ0 ¼ Sl¼0
pol : ð3Þ

Here, Vl¼0
pol ðr;ωÞ is a radial potential whose expression is

lengthy and not very illuminating, whereas r⋆ is a tortoise
coordinate defined by dr⋆=dr ¼ 1=f. The potential
Vl¼0
pol ðr;ωÞ ∼ μ2 at large spatial distances, and it vanishes

close to the BH horizon. The source term Sl¼0
pol depends on

the radial position and on the point particle’s energy. In the
highly relativistic regime

Sl¼0
pol ¼ 8

ffiffiffi
2

p
mpγðr − 2MÞðμ2rþ 2iωÞeiωtpðrÞffiffiffi

r
p ð−4μ2M þ μ4r3 þ 2μ2rþ 4rω2Þ3=2 ; ð4Þ

where γ is the Lorentz boost factor of the test particle at
large spatial separations. Here, the z axis is chosen to
coincide with the particle trajectory; hence only m ¼ 0
modes are excited.
For the dipole l ¼ 1 term, the perturbations are com-

pletely determined by two coupled equations for K and η1,
which can be recast in a linear form as

�
d
dr⋆

þ Vl¼1
pol ðrÞ

�
Σ ¼ Sl¼1

pol ; ð5Þ

where Σ ¼ ðK; η1; dK=dr⋆; dη1=dr⋆ÞT, and Vð1Þ
pol is a 4 × 4

matrix which is shown within the Supplemental Material
[12]. For a radial infalling particle with a relativistic boost
factor, the source vector is simply given by

Sl¼1
pol ¼ ð0; 0; SK; Sη1Þ ¼ ð0; 0; fðrÞ=r; 1ÞSη1 ; ð6Þ

where fðrÞ ¼ ð1 − 2M=rÞ and

Sη1 ¼ −
8

ffiffiffi
6

p
mpγð2þ r2μ2 þ 2irωÞeiωtpðrÞ

4Mr2μ2 − 8M − 6r3μ2 − r5μ4 − 4r3ω2
: ð7Þ

Quasicircular inspirals: For circular motion, the only
nontrivial new degree of freedom is the dipolar-polar
component. Our system of equations can be written as

K00 þ a1K0 þ a2K þ a3η01 þ a4η1 ¼ S1δðr − rpÞ; ð8Þ

η1
00 þ b1η01 þ b2η1 þ b3K0 þ b4K ¼ S2δðr − rpÞ; ð9Þ

where primes stand for tortoise derivatives, and rp is the
orbital radius of the test particle. The system above can be
cast in the form

�
d
dr⋆

þ Vl¼1
pol ðrÞ

�
Σ ¼ Sl¼1

circ ; ð10Þ

being Σ ¼ ðK; η1; dK=dr⋆; dη1=dr⋆ÞT and Sl¼1
circ ¼

ð0; 0; ScircK ; Scircη1 Þ. We solve Eq. (10) by first constructing
a 4 × 4 fundamental matrix X built with the homogeneous
solution of the previous system, which yields the general
solution

Σðω; rÞ ¼ X
Z

∞

−∞
X−1Sl¼1

circ dr⋆: ð11Þ

Note that the source vector contains linear combinations of
the Dirac delta and its derivative. Therefore, integrating by
parts Eq. (11), we can immediately obtain an explicit form
for the metric functions, Σðω; rÞ ¼ X½AþB�, where A
and B are two vectors given by
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A ¼
�
1 −

2M
rp

�
X−1ðrpÞSl¼1

circ ðrpÞ; ð12aÞ

B ¼ −
d
dr

��
1 −

2M
r

�
X−1Sl¼1

circ

�
r¼rp

: ð12bÞ

Numerical results.—In this section, we describe the
numerical results obtained by solving the systems of
ordinary differential equations for the monopole and dipole
components of the polar sector. As described in the
previous section, we consider circular and radial trajecto-
ries: for both the configurations, axial modes are not
excited, as the source terms vanish. We integrate
Eqs. (3) and (5) through a Green function approach, with
appropriate boundary conditions at the BH horizon and at
spatial infinity [see the Supplemental Material [12] for
further details].
Head-on collisions: For head-on collisions, thewaveform

amplitude scales linearly with the mass of the infalling point
particle, and the only free parameter is the relative velocity
at large distances. We fix this to be relativistic, and we find,
as expected, that the amplitude then scales linearly with the
boost factor γ. Although our formalism includes the general
case, relativistic collisions should mimic well the late stages
of inspiral. In addition, and perhaps more important for us
here, they should also describe even explosive events such
as supernovae. In theories of massive gravity, even spheri-
cally symmetric explosive events release a non-negligible
amount of radiation in the monopole mode.
The energy spectrum dE=dω for the monopole pertur-

bation is shown in Fig. 1 as a function of the frequency ω,
for a head-on collision. The spectrum peaks close to the
value of the graviton mass and quickly decays to zero for
higher frequencies. The total integrated energy is not shown
but it scales like Etot ∼ 0.01 μm2

pγ
2 at small couplings Mμ.

Knowing the solution in the frequency domain, we can
immediately compute the GW signal as a function of the
retarded time by simply applying a Fourier transform to

φ0ðωÞ. This is shown in Fig. 2 for two values of the
extraction radii R ¼ rμ ¼ ð10; 100Þ [22]. It is important to
highlight that GWs in theories of massive gravity are
dispersed: the waveform at large distances is no longer a
function only of t − r. This property is apparent in Fig. 2
and was also recently discussed in other setups [23]. We
find that the peak of the time-domain waveform can be
described by the following scaling

φpeak
0 ∼ κ

mpγM2

ðMμÞ5=2R1=2 ; ð13Þ

where κ ≃ 0.055, when the extraction radius R > 1. This is
not too surprising, given the μ dependence of the source
term, Eq. (7), at low frequencies ω ∼ μ. Our results indicate
that the delay between the peak of the amplitude and the
early signal can be approximated by the following law

ðt − rÞpeak ∼ ðMμÞ−0.34MR

∼ 1800

�
M
M⊙

�
0.66

�
μ

10−23 eV

�
0.66 r

8 kpc
sec :

FIG. 1. GWenergy spectrum dE=dω for the l ¼ 0 polar mode,
with Mμ ¼ ð0.1; 0.01Þ and a radial infalling particle.

FIG. 2. Gravitational waveforms for the l ¼ 0 component of
the polar sector, and a radial infalling particle, as a function of the
retarded time ðt − rÞ=M. We consider Mμ ¼ 0.01 and different
extraction radius at R ¼ ð10; 100Þ. The waveform scales trivially
with the BH mass M and the particle mass and boost mp, γ,
according to Eq. (14).
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When expressed in terms of physical metric perturba-
tions, we find

Kpeak ¼ κ
mp

M

�
M
r

�
3=2 1

Mμ

∼ 10−16
mpγ

0.01M

ffiffiffiffiffiffiffiffi
M
M⊙

s �
8 kpc
r

�
3=2 10−23 eV

μ

∼ 10−22
mpγ

0.01M

ffiffiffiffiffiffiffiffi
M
M⊙

s �
Gpc
r

�
3=2 10−25 eV

μ
: ð14Þ

These numbers are encouraging; however the large-ampli-
tude signals carry a low-frequency content ω ∼ μ, corre-
sponding to a frequency [24]

f ∼ 2.5 × 10−9
�

μ

10−23 eV

�
Hz: ð15Þ

Thus, observations of these signals will require low-
frequency sensitive detectors.
At late times and large extraction radii, the waveform is

exponentially damped. We cannot rule out power-law
decay at very late times. We have searched for the
characteristic ringdown modes in this theory and find both
good agreement with previously reported values [9] and
with the ones inferred from the time-domain waveforms.
We note in particular the presence of an unstable mode,
which does not seem to be significantly excited on these
timescales. Waveforms for the l ¼ 1 mode are shown in
Fig. 3 (again for relativistic collisions). The maximum

value of the amplitudes can be described again with a
scaling factor of the form given by Eq. (13) (see caption
of Fig. 3).
Our results can also be applied to spherically symmetric

collapse: in such a case, the source term is trivially replaced
by a spherically symmetric shell; the final source term is
unchanged. Even if 1% of the star’s rest mass is involved in
the collapse, our results indicate that the peak waveform is
detectable when μ is small enough. In fact, Eq. (14) implies
that stronger constraints can be obtained via (non-) obser-
vations of GWs from collapsing stars in our galaxy. Such
conclusions are consistent also with recent results of core-
collapse supernovae in massive scalar-tensor theories of
gravity [23].
Particles in circular motion: Quasicircular inspirals in the

weak-field, slow-motion approximation have been used to
impose constraints on massive theories of gravity using
pulsar timing observations [10]. Those constraints used
only corrections—which scaled like μ2—to the quadrupole
formula. Our results include relativistic motion in strong-
gravity situations. In GR, particles in circular motion excite
only quadrupolar or higher modes. As we saw, a new,
dipolar mode arises in massive gravity, the energy flux of
which is shown in Fig. 4.
For a particle in a circular orbit of radius rp, our results

indicate that the flux in the l ¼ m ¼ 1 mode scales like
1=r4p, so truly a dipolar behavior, with BHs having a
nontrivial dipolar charge in this theory. Furthermore, the
charge is non-negligible at small Mμ. We find a flux
dE=dt ∼ 0.6m2

pM2=r4p [25]. On the other hand, the quadru-
pole formula in GR predicts a quadrupolar emission
dE=dt ¼ ð32=5Þm2

pM3=r5p. This is one of our main results:
the dipolar emission in massive gravity theories dominates
the GR quadrupolar term, at arbitrarily small μ. Thus,
observations of binary BHs can potentially be used to rule
out these theories [26]. We are extrapolating point-particle
results to BH spacetimes. Such procedure was shown to be

FIG. 3. Waveforms obtained for the l ¼ 1 polar mode, derived
for a radial infalling particle with source term given by Eq. (7),
as a function of the retarded time ðt − rÞ=M. The panel
refers to Mμ ¼ 0.01 at extraction radii Rμ ¼ 10. The overall
behavior is the same as the monopole l ¼ 0 mode. The
maximum amplitudes of the two metric functions scale as
Kpeak ∼mpγδ1

ffiffiffiffiffiffiffi
Mμ

p
=R1.3 and ηpeak1 ∼mpγMδ2ðMμÞ−0.04=R1=2

where ðδ1; δ2Þ ≃ ð0.84; 1.3Þ (these expressions also provide the
scaling with M;mp; γ).

FIG. 4. GW luminosity dE=dt for the ðl; mÞ ¼ ð1; 1Þ polar
mode as a function of the 2-spin field mass Mμ for different
radius r̄ ¼ rp=M of the test particle on circular orbits around
the BH.
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robust in GR when the interacting objects are both BHs
[27–29]. When stars are involved, interference effects
decrease the total energy output [30,31].
Discussion.—We have worked out the details of gravi-

tational radiation in theories of massive gravity, when two
BHs merge. It is clear that a substantial fraction of the
radiation emitted in this process decays slowly, at large
distances. In fact, because the graviton is massive, low-
energy GWs are confined [see also Ref. [23]]. Such
radiation will clearly have an impact in any star or object
located within its sphere of influence, but such effects are
unknown to us so far. Circular motion at an orbital
frequency ω ¼ μ will likely lead to resonant excitations
of dipolar GWs. Unfortunately, the numerical study of such
resonances is a challenging task [32–34], upon which we
did not embark.
Technically, our procedure is free of computational

challenges. The perturbative framework that we use is an
expansion in mass ratio. All the observables that we extract
are finite and tend to be zero when the mass ratio decreases.
Thus, perturbation theory is applicable and never breaks
down as long as mass ratios are sufficiently small (in a well-
defined manner). The numerical results are convergent and
show that new modes are excited to a substantial amplitude,
both in head-on collisions and in quasicircular motion. For
head-on collisions—because new modes are excited at
characteristically small frequencies—GW detectors sensi-
tive to low-frequency radiation will be able to impose
constraints on the mass of gravitons tighter than ever
before. In fact, if we trust that our results carry over to
two, nearly equal-mass neutron stars, then the constraints
on the mass of the graviton will be improved by 2 orders of
magnitude or more. The dipolar mode excited by quasi-
circular inspirals is in fact dominant with respect to the GR
quadrupolar emission. Thus, accurate observations of
binary BHs have the potential to tightly constraint massive
gravity.
Alternatively, our results can be a manifestation that the

background geometry does not describe astrophysical BHs.
Indeed, Schwarzschild (and Kerr) BHs are unstable in
theories with a massive graviton [9,35,36]. Nevertheless,
for small mass coupling Mμ the instability timescale is
extremely large and the spacetime responds to short-time-
scale phenomena “unaware” of the instability. Thus, suf-
ficiently short-scale phenomena are expected to produce
Schwarzschild BHs, and our methods and results apply in
the regime where we would like them to, that of small
graviton masses. In addition, numerical results suggest that
when one of the metrics is taken to be nondynamical, hairy
stationary BHs do not even exist [36,37]. One cannot
exclude the possibility that a viable astrophysical BH is
described by a dynamical metric [38], in which case our
results could change considerably. In particular, Vainshtein
screening may play a critical role in more generic back-
ground BH solutions [25]. Notwithstanding, it is clear that

GW astronomy carries a huge potential to understand
theories of massive gravity: the existence of extra degrees
of freedom lead in general to substantially different
dynamics and GW emission. To fully realize this potential,
several challenges (including the correct description of
astrophysical BHs) need to be seriously tackled.
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