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We unveil the stable (d 4 1)-dimensional topological structures underlying the quench dynamics for all
of the Altland-Zirnbauer classes in d = 1 dimension, and we propose to detect such dynamical topology
from the time evolution of entanglement spectra. Focusing on systems in classes BDI and D, we find
crossings in single-particle entanglement spectra for quantum quenches between different symmetry-
protected topological phases. The entanglement-spectrum crossings are shown to be stable against
symmetry-preserving disorder and faithfully reflect both Z (class BDI) and Z, (class D) topological
characterizations. As a by-product, we unravel the topological origin of the global degeneracies temporarily
emerging in the many-body entanglement spectrum in the quench dynamics of the transverse-field Ising
model. These findings can experimentally be tested in ultracold atoms and trapped ions with the help of
cutting-edge tomography for quantum many-body states. Our work paves the way towards a systematic
understanding of the role of topology in quench dynamics.
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Introduction.—Topological quantum systems have
attracted growing theoretical and experimental interest
[1,2], due partly to their fundamental importance in phase
transitions beyond the conventional symmetry-breaking
paradigm [3] and applications to quantum computation
[4-7]. For gapped free-fermion systems at equilibrium, a
systematic classification has been established for the
Altland-Zirnbauer (AZ) classes [8—12] and with additional
crystalline symmetries [13—17]. Topological phases are
characterized by topological invariants, some of which have
been measured in ultracold atomic gases [18—20]. Entangle-
ment measures [21-23], which are related to the full
entanglement spectrum (ES) [24-26], provide yet another
powerful tool to detect topological order.

Recently, studies on topological systems have been
extended to a nonequilibrium regime [27]. Floquet systems
[28] have been demonstrated to exhibit intrinsically non-
equilibrium topological phases with no static counterparts
[29-36]. This Letter focuses on quantum quenches in
topological systems [37-46]. Starting from the ground state
|¥) of an initial Hamiltonian A, we suddenly change the
Hamiltonian to A’. The wave function subsequently under-
goes a nontrivial unitary evolution |¥(z)) = e=7"|¥).
Previous studies have unveiled topological dynamical phase
transitions [39—41], a nonequilibrium Hall response, which
is not associated with the Chern number [42-44], and
momentum-time Hopf links upon quenches during which
the Chern number varies [45,46]. Floquet quenches have
also been investigated [47—49].

However, systematically identifying and detecting the
topology of quench dynamics, i.e., the (d + 1)-dimensional
spatiotemporal topology of the wave function, remains an
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open problem. It is even unclear whether there is a stable
nontrivial (d 4 1)-dimensional dynamical topology that
survives additional bands and disorder. Note that, the
Hopf link identified in Ref. [45] is well-defined only for
a clean system with two bands [50]. In this Letter, we
demonstrate the existence of stable topological structures in
quench dynamics, and we propose the time evolution of ES
as their universal indicator. We use the K-theory to identify
all of the AZ classes that accommodate stable nontrivial
(1 4 1)-dimensional dynamical topology (see Table I). We
generalize the ES approach to quench dynamics, and we
perform detailed model studies on topological systems in
classes BDI and D, finding robust Z and Z, topological
features. Our study has a strong relevance to state-of-the-art

TABLE 1. Topological classification of the parent Hamiltonians
H (7) (1) for quench dynamics. With symmetry constraints (2)
alone, the classification is given by the maximal K group, of
which only a subset is dynamically realizable (third column).

Altland-Zirnbauer Maximal Dynamical
class K group realization
A VA 0
Alll Z®Z zZ
Al 0 0
BDI Z Z
D Z, Z,
DIII Z, ® Z, Z,
AIl Z, 0
CII VA Z
C 0 0
CI 0 0
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experiments of ultracold atoms [51-55] and trapped ions
[56-59], where many-body tomography has become pos-
sible [46,60-64].

Parent Hamiltonian and its classification.—For a formal
classification, we note that the instantaneous many-
body wave function |¥(7)) may be regarded as the ground
state of

A

H(r) = e—iﬁl’tﬁeiﬁl’z’ (1)

which we call the parent Hamiltonian. Assuming that

and A’ belong to the same d-dimensional AZ class, we
obtain

THNT ™ = H(-1) CH(HC = -A(1),

FAMN = —A(-1), (2)

whenever A and H' respect the time-reversal symmetry
(TRS) T, the particle-hole symmetry (PHS) C and/or the
chiral symmetry I'. Regarding 7 as an extra quasimomentum,
we find that A (¢) respects the TRS in d + 1 dimensions, but
thatitrespects the PHS and/or the chiral symmetry only after
reversing t to —t. Accordingly, the topological classification
for A () subject to Eq. (2) can differ qualitatively from that
for the (d + 1)-dimensional AZ classes [14]. For d = 1, the
results are shown in the second column in Table I [65]. We
emphasize that the K theory classification, which has widely
been applied to static topological insulators and super-
conductors [10,12,14,16,17], places no constraints on the
number of bands, and the topology is expected to be robust
against not-too-strong disorder [69,70]. Here, the disorder
can stem not only from the absence of translation invariance
in A and/or A’ but also from the frequency domain (Fourier
transformation of time) due to the band nonflatness in A’
[71]. These results can straightforwardly be generalized to
quench dynamics in higher dimensions and/or with any
additional twofold symmetries [14].

At this stage, it is unclear whether a nontrivial element
in these maximal K groups can be realized by parent
Hamiltonians (1), which have a specific ¢t dependence.
After a one-by-one examination [65], we identify all of the
dynamically realizable elements in the third column in
Table I. It turns out that, for all the nontrivial AZ classes,
the rwo-dimensional topological index, i.e., the strong
topological number [10] of H (t) in Eq. (1), is simply
the difference between the one-dimensional topological
indices of H and H'. This is why the results coincide with
the one-dimensional column in the well-known periodic
table [8—11]. For example, the strong topological number Z
of H(r) in class BDI is given by

Aw=w —w, (3)

where w (w') is the winding numbers of H (H"). The Z,
index v of H(t) in class D, as first identified in adiabatic
PHS-protected pumps [12], is given by

v=|N"=N|, (4)

where N (\) is the Z, index of H (H'). We will illustrate
these two classes with concrete models.

Two remarks are in order. First, the topological numbers
in the maximal K groups that are absent in quench
dynamics can take nonzero values in adiabatic topological
pumps [72-75]. Second, the weak topological numbers
[10] of a lower-dimensional nature are not shown in Table I.
In fact, the conserving Chern number in quench dynamics
in two dimensions found in Refs. [38,47] gives such an
example. Here, we find another example—the Z, index of
one-dimensional systems in class D. In other classes,
however, the one-dimensional topological index may
change or become ill-defined in quench dynamics [76].

Entanglement-spectrum dynamics after quench.—With
the topology of quench dynamics formally identified, it is
natural to ask how to detect it in a way that is universal,
numerically tractable, and experimentally accessible. For
static free-fermion systems H= > ila, ﬂH ja, ,ﬁéj-aélﬁ, where

8;0( creates a particle with internal degrees of freedom «a

at site j, an ideal candidate is the single-particle ES, which
gives the exact open-boundary spectrum of the flattened
Hamiltonian [26]. As for quench dynamics, the time
evolution of ES thus faithfully simulates the edge spectrum
flow under open-boundary conditions in real space. Given
the bulk-edge correspondence [69], we expect that the
dynamical topology can directly be readout from the ES
dynamics. Note that, the converse use of this idea can be
practically useful for recovering the Hamiltonian topology
from quench dynamics, provided that the many-body
tomography for [¥(¢)) [60,63] or the direct measurement
of the ES [54,77] is achievable.

We sketch out the definition of the single-particle ES of a
Gaussian state |¥). Denoting S (S) as the region of interest
(the complement of §), the reduced density operator pg =

Trs[|¥) (W|] can be rewritten as pg = Zg'e e, with Hy =
Znenﬁfn being the quadratic entanglement Hamiltonian
[78], where f”n is linear in ¢j,. The single-particle ES is
given by [79]

1

$n = 1 (5)
so that an entanglement zero mode €, = 0 corresponds to
g, = % To investigate the ES dynamics, we calculate &, for
|¥(#)) at each time in concrete models, in classes BDI and

D, and we visualize the Z and Z, indices.
Two-band BDI systems in one dimension.—We start
with two-band systems in class BDI. Without the loss of
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(a) Quench in the SSH model (6) from a dimerized state. The orange rectangle marks a unit cell. (b) Half-chain entanglement

cut (shaded region S) of a periodic chain. (c) Quench protocols. The leftmost three arrows show quenches across the topological phase
boundary. (d) Dynamics of the single-particle ES (5) after quenches across the phase boundary, showing crossings at &, = % The total
number of &,’s is L, and most of them are very close to O or 1. (e) Single-particle ES dynamics after quenches within the same phase and
to the critical point, showing no crossings at £, = % The system size is L = 100.

generality, we denote the Bloch Hamiltonian as h(k) =
d(k) -0, where 6 =),  o"e, is the Pauli-matrix vec-
tor, with e, being the unit vector in the y direction. The
Hamiltonian A can be related to h(k) by H = 3,1 h(k)é;,
& = (a. b, = #Zje_ikjflj (b=
# Zje‘”‘jlsj), L is the number of unit cells and a; ()
annihilates a fermion in the A (B) sublattice in the jth unit
cell [see Fig. 1(a)].

Now we impose TRS 7 and PHS C, which satisfy 7~ =
cr =1, ’f’ék’f"l = ¢, and C¢,C"' = 6%_;. In terms of
the d vector, the symmetry constraints [H,7]={H,C}=0
imply d,(k) = d,(=k), d,(k) = —d,(—k) and d (k) = 0.
Note that, [¢*, h(I")] = 0 at high-symmetry points I" = 0, ,
where the Bloch state is an eigenstate of o* with eigenvalue
vr = 1. The winding number is determined by w =
JZ(dk/27) (g (k)/q(k)) with q(k) = d (k) - id,(k), and
the PHS-protected Z, index reads N = % lvo —vg| =
wmod 2.

A prototypical example in class BDI is the Su-Schrieffer-
Heeger (SSH) model [80]:

where

H= _Z(lesjaj +Jyal, b, +He.), (6)
J

where J; and J, are the intra- and inter-unit-cell hopping
amplitudes, respectively. The Fourier transformation of
Eq. (6) givesd (k) = —(J| + J, cosk, J, sink, 0), implying
o, vz) = [(J1 +o/|1 + Ja), (J1 = T2/ [J1 = Do]). In
real systems such as polyacetylene [81] and ultracold
atoms [18,74,75], we generally have J;, J, >0, and a
topological phase transition from N = 0 to N’ = 1 occurs
upon crossing the boundary J; = J, [see Fig. 1(c)].

If we quench the parameters in the SSH model (6) as
(J1,J2) = (J,0) = (J',J), [¥(z)) will remain to be in the
same trivial phase as the dimerized phase with N' = 0.
Hence, topological entanglement edge modes in |¥(z)) are
absent in general. This is confirmed numerically, i.e., the
half-chain [see Fig. 1(b)] ES &, # % for almost all the time

in Figs. 1(d) and 1(e). However, in the flat-band case
J' =0, we find periodic oscillations of £,’s, which cross
each other at 7,, = (m—3)% with m € Z", where the
system instantaneously becomes class BDI with winding
number 2. Remarkably, the crossings stay robust as J’
increases as long as J' < J, with 7; gradually increasing
to infinity. This should be understood as the robustness of
the nontrivial (1 + 1)-dimensional topology characterized
by Aw = 1, although the temporal periodicity disappears.
When J exceeds J', no crossings occur. This sharp
transition in the ES dynamics distinguishes the quenches
across different topological phases from those within the
same phase.

The ES crossings can alternatively be interpreted as a
result of the nontrivial PHS-protected index v = 1, which
equals the Skyrmion charge (Chern number) of the d-
vector textures in one half of the momentum-time space
[65]. Indeed, the ES crossings resemble the Dirac-
cone dispersion of edge (entanglement) modes in two-
dimensional topological insulators [82,83]. The Chern
number can be nonzero since d, is dynamically generated
even if it vanishes in both i (k) and 4’(k). Such a dynamical
Chern number has recently been identified for general
two-band systems [84], and it should be experimentally
measurable with the help of Bloch-state tomography for
ultracold atoms in optical lattices [46,60-62].

Influence of the band number, disorder, and symmetry
breaking.—In the presence of additional bands and/or
disorder, the picture of momentum-time Skyrmions men-
tioned above breaks down and only a Z, index instead of a
PHS-protected Chern number is well-defined. Never-
theless, we will show that the ES dynamics remains a
good indicator for the stable dynamical topology and
clearly distinguishes the Z (class BDI) characterization
from the Z, (class D) one.

According to Table I, the quench dynamics in class BDI
systems are characterized by Z. Since the addition operation
on a K group is the direct sum up to continuous deformation,
we expect the number of ES crossings to be multiplied by M
if we quench M copies of the system coupled to each other
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FIG.2. Three coupled SSH chains in (a) class BDI and (b) class
D. Hopping amplitudes J, (¢ = 1,2, ¢) are randomly sampled
from a uniform distribution over [0.6J,, 1.4J,]. (c) ES dynamics
after quench (J,,J,,J.) = (0,1.57,0) —» (1.57,0.57,0.5J) in
(a) with L = 40 and the periodic-boundary condition. The result
(F =0) is compared with those after partial (F = 0.5) and
complete (F = 1) band flattening A’. A partially flattened Hami-
ltonian Ay (F € (0, 1)) is related to the original one Hfy = A’ and
the completely flattened one A’ via Hy = FH + (1 — F)Hj,
The ES crossings in the blue circle split into those marked by red
arrows when F changes from 1 to 0. The remaining two crossings
in the red circle occur in the second period in the flat-band limit.
(d) Same as (c) but for the system in (b) with a different quench
protocol (J,7,,7J.) = (0,1.57,0) = (1.5J,0.5J,J).

without breaking the symmetries [see Fig. 2(a)], provided
that the disorder in the frequency domain due to band
nonflatness is not so strong. We numerically confirm this for
M =1~4 SSH chains with hopping disorder [65]. An
example for M = 3 is shown in Fig. 2(c), where we see
2M = 6-fold degenerate ES crossings in the flat-band limit,
with the factor of 2 arising from the periodic-boundary
condition. Note that, the crossings for nonflat bands are
more like middle-gap edge states, a feature well-known in

topological crystalline systems [79]. Indeed, Cbehaves like a
crystalline symmetry.

If we break TRS alone, the symmetry class changes from
BDI to D and the K-theory classification gives Z, (see
Table 1), over which 15, + 17, = 0z,. As a result, we ex-
pect the presence (absence [85]) of ES crossings if we
quench odd (even) copies of SSH chains with coupling
amplitudes respecting PHS but breaking TRS [see Fig. 2(b)].
In Fig. 2(d), we present the results for M = 3 chains. We find
that only a single pair of crossings survive in a period in the
flat-band limit, and the crossings persist when introducing
band nonflatness. We have observed a similar behavior
in class DIII [65], which is also characterized by Z, (see
Table I).

Discussions.—The ES dynamics has been discussed in
the transverse-field Ising model [86], which can be mapped
to the Kitaev chain [87]. Therein, global twofold degen-
eracies emerge in the many-body ES A;’s at certain times

upon the field quench across the critical value. Since the
many-body ES {4} as eigenvalues of pg are related to £,’s
via [26]

1 1
Iy =11 [5 + Su (én _Eﬂ’ s, ==£1, (7)

we can attribute these global degeneracies to single-particle
ES crossings at % Since the Kitaev chain belongs to class D,
according to Table I, we expect the global many-body ES
degeneracies to be robust against disorder. This is con-
firmed in an Ising chain subject to an inhomogeneous
magnetic field:

H= Z(J&j&’;H + B;5%). (8)
J

where B; obeys a uniform distribution over [B; — W, B;+
W]. As shown in Fig. 3(b), the global many-body ES
degeneracies persist in spite of disorder, although they
appear at different times. We have further checked the
robustness against random coupling [65]. Such a topologi-
cal dynamical phenomena can be explored in trapped-ion
systems with the help of matrix-product-state tomography
[63,64].

It was conjectured [86] that the emergence of many-
body-ES degeneracies is related to a dynamical quantum
phase transition [88] associated with singularities of the
dynamical free-energy density f(t) = —lim;_(1/L)x
In|(W|e=1|¥)|2. As for the SSH model, every time
f(#) becomes nonanalytic, we arrive at the center of a
momentum-time Skyrmion. However, a precise numerical
analysis indicates that these times do not exactly coincide
with those of ES crossings [65]. Furthermore, a dynamical
phase transition may occur without ES crossings in the
Rice-Mele model [89]. Therefore, dynamical phase tran-
sitions and ES crossings are not equivalent, although there
could be a sufficient condition for both of them [41].

(b)

66666@3’

Unitary ﬂ Evolution < 2
103 ¥ ‘2‘ "
£ 2% Wy > B ‘,,
saanen Tl
0 2

FIG. 3. (a) With an inhomogeneous magnetic field quenched, a
nearly disentangled paramagnetic Ising chain (8) becomes en-
tangled under unitary evolution. The orange line denotes the half-
chain cut. (b) Dynamics of the many-body ES A (7). Quench
protocol: (J,B;) = (1,1.5) - (1,0.5), with (W =0.25J) or
without disorder (W = 0). The length of the open Ising chain
is L = 10. The dashed lines indicate where global twofold
degeneracies emerge.
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Similar conclusions are drawn in Ref. [45] for quench
dynamics in two dimensions.

The ES dynamics has also been studied in the context
of topological Floquet systems [35,90]. A prototypical
example of a modulated Ising chain is studied in Ref. [35],
which is reminiscent of a quench H =3 B = H =
321876741
the ES dynamics is for Floquet eigenstates and the
robustness of crossing is discussed through perturbations
with the same Floquet period; here, we focus on physical
states undergoing unitary evolution generated by time-
independent Hamiltonians, and the temporal periodicity is
generally absent.

Summary and outlook.—We have identified the stable
topological structures for all the one-dimensional quench
dynamics within the same AZ class. We have proposed
using the ES dynamics to detect the dynamical topology
and performed detailed model studies for classes BDI and
D. We have numerically demonstrated the robust Z and Z,
features. These phenomena can be explored in state-of-the-
art ultracold-atom and trapped-ion experiments [65].

In higher dimensions [91], and/or with additional
symmetries, there remains an open problem as to whether
a nontrivial (d + 1)-dimensional topological structure
emerges in quench dynamics, and if so, how do the
single-particle ES dynamics look. The influence of the
interaction is another important issue that might be tackled
from the dynamics of the many-body ES. In one dimension,
this can be readout from the matrix-product-state repre-
sentation [92]. Examples are provided in the Supplemental
Material [65].
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