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Multiparameter estimation theory offers a general framework to explore imaging techniques beyond the
Rayleigh limit. While optimal measurements of single parameters characterizing a composite light source
are now well understood, simultaneous determination of multiple parameters poses a much greater
challenge that in general requires implementation of collective measurements. Here we show, theoretically
and experimentally, that Hong-Ou-Mandel interference followed by spatially resolved detection of photons
provides precise information on both the separation and the centroid for a pair of point emitters, avoiding
trade-offs inherent to single-photon measurements.
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Multiparameter quantum estimation emerges as a general
framework to optimize information retrieval in a variety of
experimental scenarios. The problem of imaging can be
viewed as an important example of such a scenario, where
the properties of an image, for example, locations and
intensities of point emitters, or the moments of the image
intensity distribution are the parameters to be estimated
[1–7]. A recently introduced family of superresolution
imaging schemes [8–13] based on spatial demultiplexing
enables one to determine the separation of two nearby point
sources below the Rayleigh limit, but requires in principle
perfect knowledge of the centroid [4]. Moreover, at the
single-photon level they are fundamentally incompatible
with the measurement needed to estimate the centroid itself.
Nonetheless, the effort to extract optimally information
carried in light emitted naturally by a source [13–19]
may open up new applications compared to established
approaches that require manipulations of the sample to be
imaged [20].
A deeper insight rooted in the multiparameter estimation

theory reveals a possible solution of the above incompat-
ibility problem. Interestingly, in the strong subdiffraction
regime where images of the sources overlap significantly,
the problem can be modeled as simultaneous estimation of
the length and the rotation angle of a qubit Bloch vector [4].
From the theory of multiparameter estimation it then
follows that, provided collective measurement on the
photons (or qubits) is allowed, the incompatibility between

the optimal individual measurements to estimate the
centroid and the sources’ separation ceases to be an issue
[21,22]. The question is how to realize such a collective
measurement in practice.
In this Letter, we exploit the advantages offered by the

multiphoton interference approach, demonstrating a two-
photon (2P) protocol for imaging of two point sources,
where the centroid estimation is performed in the optimal
way, and at the same time the sources’ separation parameter
is estimated with a superresolution precision. The idea
relies on the effect of two-photon interference and does not
require preestimation of the centroid or fine-tuning of the
measurement basis inherent to spatial mode demultiplexing
schemes [8–13], where any systematic error in the centroid
estimation propagates to the separation estimation and
significantly degrades the imaging protocol.
In Fig. 1(a) we depict a scenario where two photons

emitted by a composite source arrive simultaneously at the
input ports of the beam splitter. The proposed protocol
exploits both cross-coincidences between the output ports
and double events in each port, detected with spatial
resolution [23]. The number of cross-coincidences grows
with the distinguishability of the two photons and therefore
carries information about the separation between point
sources. Most importantly, the proposed interferometric
scheme does not require prior selection of the measurement
basis or the axis of symmetry, as the two photons serve as a
reference for each other. Furthermore, thanks to spatially
resolved detection this strategy will be shown to be robust
against residual spectral distinguishability. Let us note that
previous approaches to collective measurements relied on
the fundamental advantage of using photonic entanglement
[24], also for superresolution photolithography [25–28],
which is essentially different from our technique of simply
utilizing the bosonic nature of photons.
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The somewhat nontrivial demand of interfering two
photons from a realistic classical (thermal) composite
source on a beam splitter could be realized by a photon
number quantum nondemolition (QND) measuring device
that preserves spatial properties of light, and upon register-
ing single photons delays and redirects them so that they
arrive together at the two beam splitter input ports. Recent
advances in storing and controlling single photons in
quantum nonlinear media such as Rydberg atoms [29] as
well as spatially multimode quantum memories [30] with
processing capabilities [31] could provide a viable way to
realize the scheme. In particular, a π phase shift induced by
a single photon has already been achieved [32] and current
experiments already explore the Rydberg interactions in the
transverse spatial domain [33]. The combination of a
multimode quantum memory with the spatially resolving
QND measurement could follow the steps of experiments
demonstrating optical storage in Rydberg media [34,35], use
alternative proposals such as nonlinearities induced by ac-
Stark shifts [36], or utilize novel solid-state systems with
similar capabilities yet broader spectral bandwidths [37,38].
To support the intuitions behind the discussed scheme,

let us compare the two-photon imaging scheme with direct
imaging (DI) by modeling a problem of resolving a 1D
image formed by two point sources. Let ψðx − x0Þ be a 1D

wave function representing the amplitude transfer function
of a single source in the image plane centered at point x0.
We assume that this function is determined by well-
characterized properties of the imaging setup. In what
follows we denote the corresponding single-photon state
characterized by ψðx − x0Þ as jx0i.
Consider a situation where the image is produced as

a result of an incoherent overlap of images of two point
sources separated by a distance ε, located at xþ ¼ x0 þ ε=2
and x− ¼ x0 − ε=2. We may then write the spatial density
matrix of a photon emitted from the system as
ρ ¼ 1=2ðjxþihxþj þ jx−ihx−jÞ.
In the DI scheme the probability distribution for

the position of the detected photon is given by
pθðxÞ¼1

2
jψðx−xþÞj2þ1

2
jψðx−x−Þj2, where θ¼½ðxþþx−Þ=

2;xþ−x−�¼ðx0;εÞ represents the dependence on the
estimated parameters. For any locally unbiased estimator,
the covariance matrix for the estimated parameters can be
lower bounded using the Cramér-Rao inequality [39]:

Covθ ≥
F−1

N
; Fij ¼

Z
∞

−∞
dx

∂θipθðxÞ∂θjpθðxÞ
pθðxÞ

; ð1Þ

where Fij is the Fisher information (FI) matrix per single
photon, while N represents the total number of photons
registered. The bound is asymptotically saturable using, e.g.,
a max-likelihood estimator; hence, limN→∞NCovθ ¼ F−1.
As the FI matrix is diagonal for the given problem, we can
easily calculate the variances Δ2x0 ¼ ðF−1Þ11, Δ2ε ¼
ðF−1Þ22 of the estimated parameters per single photon used.
In the case of DI, the FI matrix yields the following precision
for estimation in the leading order in ε:

ðΔ2x0Þ−1DI ¼ 1 −
ε2

4
; ð2Þ

ðΔ2εÞ−1DI ¼
ε2

8
; ð3Þ

where for concreteness we have assumed a Gaussian-shaped
transfer function ψðxÞ ¼ ð2πÞ−1=4 expð−x2=4Þ, yielding an
intensity profile with standard deviation 1, which can be
regarded as a natural unit of distance in the problem. The
above expansion is valid for small ε when source point
images are separated by a distance smaller than the transfer
function spread, and clearly shows impossibility of precise
estimation of ε in the ε → 0 limit.
Crucially, as observed in Ref. [10], a more fundamental

bound based on the quantum FI matrix FQ [40], which does
not assume any particular measurement strategy and is
based solely on the properties of the quantum state ρ to be
measured, reads

ðΔ2x0Þ−1Q ¼ 1 −
ε2

4
; ð4Þ

(a)

(b) (c)

FIG. 1. The idea for collectively enhanced quantum imaging
protocol. (a) Two point sources are imaged using an optical system
with awell-defined intensity point-spread function (inset: all curves
are normalized to equal integrals). The photons are made to
interfere (see text for details) at the output beam splitter, after
which we register cross-coincidences and double events with
spatial resolution. Information about sources’ separation ε as well
as centroid x0 are drawn both from the ratio of cross-coincidences
(b) to double events (c) and their spatial probability distributions
pcðx1; x2Þ and pdðx1; x2Þ (here expressed in arbitrary units).
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ðΔ2εÞ−1Q ¼ 1

4
; ð5Þ

indicating a potential spectacular robustness of the ε
estimation as the Δ2ε is constant irrespectively of how
small ε is. While the bound Eq. (1) with F being replaced
by FQ is saturable for the problem considered, it requires
collective measurements on many copies of ρ [1,4,5,22].
We are now ready to quantify the precision of estimating

x0 and ε in the two-photon interferometric scheme and
contrast it with the abovementioned strategies. Given ρ⊗2 at
the input ports of the beam splitter, we calculate spatially
resolved probabilities for coincidences pcðx1; x2Þ as well
as double events pdðx1; x2Þ, from which the information
about x0 and ε is drawn. Furthermore, we assume a known
two-photon visibility V resulting from the operation of
the nondemolition photon routing device before the beam
splitter. The resulting precision of estimation per single
photon used, see Supplemental Material [41], expanded up
to the second order in ε reads

ðΔ2x0Þ−12P ¼ 1 −
ε2

4
; ð6Þ

ðΔ2εÞ−12P ¼
(

1
8
þ 5

128
ε2 V ¼ 1

4−V2

32ð1−V2Þ ε
2 V < 1;

ð7Þ

while the expansion in case of imperfect visibility is valid in
the regime where ε2 ≲ 1 − V. In case of perfect interfer-
ence, we see that while keeping the optimality of the x0
estimation, we additionally obtain the ε estimation with
precision reduced by approximately a factor of 2 compared
to the fundamental bound given in Eq. (5). This shows
superiority of 2P over DI, with the added advantage that the
measurement setting is fixed and does not require adjusting
the measurement for ε depending on preestimation of x0.
Here we would like to stress the importance of spatial
information that is available in the experiment: if only the
ratio of coincidence and double events was available, there
would be no information on the x0 parameter at all, while
the precision of the ε estimation shows a small reduction for
finite ε compared with Eq. (7) and reads as 1

8
− 5

128
ε2 þ

Oðε4Þ when the visibility is equal to 1.
The role of spatial information becomes more pro-

nounced for finite visibilities V, for which the spatial
information always provides an advantage for all values
of ε compared to the case when we consider only the
ratio of cross-coincidences and double events where
the precision reads V2½32ð1 − V2Þ�−1ε2 þOðε4Þ. This is
achieved as coincidences that arise due to finite visibility
are characterized by a different spatial distribution than
coincidences that are due to spatial separation. In both cases
we recover the ε2 scaling, and thus for small ε the

advantage of the collective schemes over DI takes the
form of a constant factor rather than favorable scaling.
Nonetheless, as this factor scales as ð1 − VÞ−1, the enhance-
ment can be significant.
For a proof-of-principle experimental demonstration, we

generated families of states ρ⊗2 for a set of separations ε
[see Fig. 2(a) and Supplemental Material for details of the
interferometric setup [41]]. In Figs. 2(c) and 2(d) we plot
the final precision of estimation divided by the total number
of photons used as a function of ε (see Supplemental
Material for details of the data analysis [41]). The proposed
theory (for V ¼ 0.92) accurately predicts the estimation
precision for the given experimental parameters demon-
strating a significant, over twofold, enhancement over the
DI scheme. The spatial resolution provides an advantage
over the whole range of parameters, as it allows us to
distinguish effects of finite visibility versus the reduced
mode overlap due to source separation.
In Figs. 2(c) and 2(d) we additionally plot the theoretical

predictions for V ¼ 0.99 and perfect interference, i.e.,
V ¼ 1. The precision approaches a constant value for
ε → 0 only for V ¼ 1, but offers significant enhancement
for realistic visibilities. Note that if information is drawn
only from the number of coincidences to double events
with no spatial resolution, we can still beat the DI scheme
over a broad range of parameters, especially for small ε.
This highlights the possibility to perform precise imaging
with only single-pixel detectors.
Let us now provide a simple argument for the observed

degree of precision enhancement. The approximately two-
fold reduction of precision for the ε estimation for V ¼ 1 in
the 2P protocol compared to the fundamental bound is due
to the fact that the protocol performs collective measure-
ment on two photons only. The essence of the collective
measurement is effective projection of ρ⊗2 on symmetric
and antisymmetric subspaces thanks to the properties of the
Hong-Ou-Mandel interference. Such a measurement com-
mutes with joint unitary transformation of the state
U⊗2ρ⊗2U†⊗2, which represents the shift of the centroid
x0 in our model, and hence is compatible with the
measurement optimal for extracting information on x0.
Theoretically, if collective measurements on an arbitrary
number of copies were possible, one could project the ρ⊗N

state on subspaces corresponding to different irreducible
representation of the permutation group which provides
optimal information about the ε parameter in the N → ∞
limit and does not interfere with the optimal measurement
of x0 [21]. Thus, through harnessing more than two photons
one would be able to approach and even saturate the
quantum Cramér-Rao bound Eq. (4).
Interestingly, in a slightly modified imaging scenario,

the two-photon measurements may actually saturate the
limit discussed above. Consider a different variant of the
two-photon state impinging on the beam splitter:
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ρ11¼
1

2
ðjxþihxþj⊗ jx−ihx−jþjx−ihx−j⊗ jxþihxþjÞ; ð8Þ

which represents a situation where the photons from the
two sources always enter at different input ports of the
beam splitter. Such a two-photon state could be obtained
from a pair of single-photon emitters excited simultane-
ously, where we would never observe two photons emitted
from the same source. In this case, analogous calculations
to the ones presented in Ref. [1] for the ρ state lead to the
quantum FI matrix, which in the leading order in ε remains
unchanged, whereas the two-photon experiment described
above saturates the bound exactly:

ðΔ2x0Þ−12P;ρ11 ¼ ðΔ2x0Þ−1Q;ρ11
¼ 1; ð9Þ

ðΔ2εÞ−12P;ρ11 ¼ ðΔ2εÞ−1Q;ρ11
¼ 1

4
: ð10Þ

Finally, it is insightful to juxtapose the presented scheme
with the celebrated Hanbury Brown–Twiss (HBT) inter-
ferometry [44–48]. The essential difference is that in our
approach photon positions are measured in the image plane,
while in the HBT scenario spatially resolved detection is
implemented in the Fourier plane conjugate to the source.
For photons arriving from point sources located at angular
positions specified by wave vectors k1 and k2 and detectors
placed at r1 and r2, HBT interference produces fringes
whose spatial variation is proportional to the expression
cos2½ðk1 − k2Þðr1 − r2Þ=2� [49]. If the maximum distance
jr1 − r2j, which can be viewed as the aperture of the

(a) (c)

(b) (d)

FIG. 2. Results of the multiparameter quantum estimation in a superresolution imaging scenario with a photon-pair source.
(a) Experimental setup for generating a pair of photons in two adjacent modes (PBS, polarizing beam splitter; λ=2, half-wave plate;
BD, calcite beam displacer). Using an jhvi photon pair and reconfiguring the positions of the retroreflectors in the interferometer, we
generate the two-photon state expected in the imaging experiment for a set of values of source separation ε. The output single mode fiber
(SMF) face is imaged onto the I-sCMOS sensor (see Supplemental Material [41] or Ref. [43] for details of I-sCMOS sensor operation and
construction) photocathode so that the beam has a flat wave front with 1=e2 diameter of 100 μm. The camera registers cross-coincidences
(as coincidences between regions A–C, A–D, B–C, and B–D) and double events (as coincidences between regions A–B or C–D).
(b) Spatially resolved cross-coincidences (top) and double events (bottom) along with fitted model with Gaussian mode shape for
subsequent values of ε corresponding to data points in (c) and (d). Color scale for each map is normalized separately to highlight shape
intricacies. (c) Precision of estimation of ε for the ρ⊗2 state and (d) precision of estimation of the centroid position x0 as a function of source
separation ε. The collective 2P scheme provides an enhancement in estimation of εwhile preserving the precision of centroid estimation.
The ultimate precision limit given by the quantum Cramér-Rao bound is denoted by qCRB, and for the precision of centroid estimation in
(d) it overlaps with the precision obtained with the protocols we employ. Theoretical curves are obtained from numerically evaluated FI.
Error bars correspond to 1 standard deviation of results obtained from each data set containing 1000 coincidences (see Supplemental
Material for details [41]).
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measuring system, is fixed, an attempt to retrieve the angular
separation between the sources fromHBT fringes will suffer
from the Rayleigh curse in the limit jk1 − k2j → 0. This is
because for vanishing jk1 − k2j onewill observe only a small
fraction of the HBT fringe in the vicinity of its maximum.
In the case of the two-photon scheme presented here, we

should emphasize the role of the prior QNDmeasurement if
superresolution is to be achieved with classical thermal
light sources. While HBT interferometry works also with
classical light sources, albeit with reduced visibility, the
enhancement offered by our scheme stems from realizing
two-photon interferometry sufficiently close to the dark
fringe, i.e., with high visibility V. In fact, since classical
light sources can attain at most 50% visibility of Hong-Ou-
Mandel interference, Eq. (6) indicates that no significant
improvement is possible over the DI scheme: for V ¼ 0.5,
we get ðΔ2εÞ−12P ¼ ð5ε2=32Þ versus ðΔ2εÞ−1DI ¼ ðε2=8Þ in the
case of direct imaging.
In conclusion, we have demonstrated both theoretically

and experimentally an imaging protocol that circumvents
the difficulties in a multiparameter estimation problem by
use of a collective measurement. The presented experi-
mental results conclusively confirm the possibility to
exploit the inherent indistinguishability of photons to
perform quantum-enhanced simultaneous estimation of
source separation and centroid. With this proof-of-principle
experiment we have also proposed a set of realistic schemes
in which our protocol could be readily applied, even to gain
additional information along the traditional single-photon
DI scenario or other superresolution techniques. The
general theory of superresolved imaging [1,4,7] implies
that the same protocol might be directly applied in the case
of a more general light source distribution provided one
would be interested in estimating its first and second
moments.
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