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Topological quantum states are characterized by nonlocal invariants. We present a new dynamical
approach for ultracold-atom systems to uncover their band topology, and we provide solid evidence to
demonstrate its experimental advantages. After quenching a two-dimensional (2D) Chern band, realized in
an ultracold 87Rb gas from a trivial to a topological parameter regime, we observe an emerging ring
structure in the spin dynamics during the unitary evolution, which uniquely corresponds to the Chern
number for the postquench band. By extracting 2D bulk topology from the 1D ring pattern, our scheme
displays simplicity and is insensitive to perturbations. This insensitivity enables a high-precision
determination of the full phase diagram for the system’s band topology.
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Topological quantummatter has been a significant topic of
investigation since the celebrated discovery of the quantum
Hall effect [1,2]. Unlike symmetry-breaking phases of local
order parameters, topological quantum states feature nonlocal
topological invariants [3], which usually do not connect
directly to local physical observables. Characterizing topo-
logical states or phases is often challenging. In solid-state
experiments, various characterization strategies have been
successfully developed for the discovery of topological
insulators [4–7] and semimetals [8,9]. Nevertheless, these
strategies do not directly measure topological numbers in
some circumstances and do not provide explicit evidence for
topological quantum phases, such as Majorana modes in the
topological superconductivity [10–13].
A variety of strategies for detecting topology for an

ultracold-atom system have also been developed. A one-
dimensional (1D) Su-Schrieffer-Heeger model in a 1D
superlattice has a band topology that can be determined
by measuring the Zak phase [14]. Topology of a 2D Chern
insulator, characterized by Chern invariants, can be
observed by Hall transport [15,16], by Berry curvature
mapping [17], by imaging spin polarization at symmetric
Bloch momenta [18–20]. Recently, the quantum quench for
topological systems has attracted attention, with the
dynamical quantum phase transition [21–24] and the

evolution of the system topology after quench [25–29]
having being actively investigated. In particular, experi-
ments start to explore the band topology from quench
dynamics [30,31]. By quenching across topological tran-
sition, a linking number can be obtained in the momentum-
time domain to characterize the topology of the postquench
band [30,32]. Unfortunately, to precisely detect the top-
ology is more challenging. Chern invariants are detectable
only in a few special cases, e.g., when the Chern band is flat
[15], has inversion symmetry [18–20], or corresponds to a
two-band model [30,32]. Precise detection is typically
achieved only in deep topological regimes. Close to phase
boundaries, measurement becomes increasingly imprecise
due to a small topological gap and a nonideal condition
such as thermal effects [20].
In this Letter, we explore a new dynamical approach to

characterize a 2D quantum anomalous Hall (QAH) insu-
lator. After the system Hamiltonian is quenched from a
trivial to a topological parameter regime, a novel ring
pattern of the spin dynamics emerges in momentum space
during unitary evolution and uniquely corresponds to a
nontrivial postquench topology. The configuration pattern,
with the ring surrounding the Γ or the M point of the first
Brillouin zone (FBZ), yields the Chern number of the
postquench band.
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Our scheme uncovers topology by quantum quench
dynamics and exhibits several advantages. First, the ring
structure arises during short-time unitary evolution and is
thus insensitive to imperfect conditions such as thermal
effects, which are relevant to longtime dynamics and to
equilibrium dynamics. Second, unlike the linking number
defined for 3D momentum-time space, the ring pattern is a
1D object, making the scheme simple and robust. Third,
our experiment is the first clear evidence of so-called bulk-
surface (bulk-ring in 2D) correspondence [33], which is
universal for generic multiband systems for arbitrary
dimensions. These advantages lead to a highly precise
determination of the full topological phase diagram.
Quenching the 2D spin-orbit coupled Bose gas.—Our

experiment is based on a QAH model [34] for 2D SO
coupling [19,35] in a highly controllable Raman lattice
[20,36]. The 2D SO coupling is induced by periodic Raman
potentials along the x and y directions [Fig. 1(a)]. We
define the j1;−1i (j1; 0i) state of 87Rb as spin-up j↑i (spin-
down j↓i) [Fig. 1(b)]. The effective Hamiltonian reads

H ¼ p2

2m
þ V latt þ

δ

2
σz þM1ðx; yÞσx þM2ðx; yÞσy; ð1Þ

where V latt ¼ −V0ðcos2k0xþ cos2k0yÞ is the 2D lattice
potential with lattice depth V0, δ is the two-photon
Raman detuning, and M1 ¼ Ω0 cos k0x sin k0y and M2 ¼
Ω0 cos k0y sin k0x are Raman coupling lattices [20,36]. We
focus on the symmetric case in which M1;2 have the same
amplitude Ω0 and the 2D SO coupling is formed with a C4

symmetry [20,36].
A gas of 87Rb atoms is optically pumped into the j↑i

state and cooled to a temperature just above the Bose-
Einstein condensate. Atoms are then adiabatically loaded
into the 2D optical lattice in 100 ms to maintain thermal
equilibrium. At this stage, the initial two-photon detuning
is set at δi ¼ −200Er. Thus, the Raman couplings M1 and
M2 are effectively suppressed. The system is fully spin
polarized in a topological trivial band.
Quench dynamics starts at time t ¼ 0, when δ is

switched from its initial value δi to a final near-resonant
value δf within 200 ns, and nonzero M1 and M2 are
introduced. The band structure thus switches from 2D
lattice bands to 2D SO-coupling bands, shown in Fig. 1(c).
This rapid quench projects the initial fully spin-polarized
state onto superpositions of different eigenstates of the
postquench Hamiltonian HðδfÞ. This quench initiates a
nonequilibrium evolution of Raman-induced Rabi oscilla-
tions between the j↑i and j↓i states governed by HðδfÞ.
Spin oscillation is quantified by the momentum-dependent
spin polarization Pðq;tÞ¼½ðN↑−N↓Þ=ðN↑þN↓Þ�, where
N↑ (N↓) denotes the number of atoms detected in the spin-
up (-down) state at quasimomentum q.
After the quench from δi to δf, we let the system evolve

for a delay time t, and Pðq; tÞ is then obtained by spin-
resolved TOF imaging [37]. Measurements are repeated for
various momenta q in the FBZ, and a sequence of times t
are taken for each q. Examples are shown in Fig. 2.
We now remark on the quench spin dynamics. For

clarity, we focus on the lowest s band. All atoms are
initialized in the spin-up state. Postquench spin dynamics is
governed by two properties, namely, the Raman coupling
terms M1;2 and the local gap ΔðqÞ between the j↑i and j↓i
bands at q. The former controls the spin flip in the x-y
plane, and the latter, defined for HðδfÞ by settingM1;2 → 0

[37], serves as a momentum-dependent detuning for the
Raman couplings. For momenta with ΔðqÞ ¼ 0, coupling
between the j↑i and j↓i bands is resonant, and the initial
j↑i state can be fully flipped to the j↓i state during the
unitary evolution.
Uncovering the topology: Dynamical ring pattern.—We

first interpret the spin dynamics shown in Fig. 2(a), for
which δf ¼ 0 and ðV0;Ω0Þ ¼ ð4.0; 1.0ÞEr. Vanishing two-
photon detuning δf implies that the postquench band at
equilibrium is gapless and has two Dirac points at fX1;2g ¼
fð0; πÞ; ðπ; 0Þg. Intriguingly, a straight-line pattern of spin-
down components connecting the Dirac points emerges for
short-time spin dynamics (< 2 ms), for which the spin
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FIG. 1. (a) Experimental scheme. Two laser beams Ex and Ey
are incident on the atoms and generate 2D lattice and Raman
coupling. A bias magnetic field B is along the z direction. All
wave plates (λ=2, λ=4 and λph) are for realizing C4-symmetric 2D
SO coupling [20]. Laser-beam frequencies are controlled by
AOM1 and AOM2, with phase-locked radio-frequency signaling
rf1, rf2, and rf3. The switch is for quenching by switching rf2 and
rf3 to change the two-photon detuning of the Raman couplings.
(b) Level structure and Raman transitions. Raman coupling
strengths Ω1 and Ω2 are induced by ðExσ;EyπÞ and ðEyσ ; ExπÞ,
respectively, and δi and δf represent two-photon detuning before
and after quenching. (c) s-band structure before and after the
quantum quench with the spin polarization of the equilibrium
distribution presented.
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evolution is almost unitary, as decoherence and dissipation
are much slower. Such a straight-line pattern highlights the
momenta where the j↑i and j↓i bands of the Hamiltonian
Hðδf;M1;2 → 0Þ cross with each other; i.e., ΔðqÞ ¼ 0.
For small but nonzero two-photon detuning, we observe

the emergence of a ring structure in the spin dynamics
Pðq; tÞ. Figure 2(b) shows spin polarization patterns for a
fixed evolution time as a function of δf. For δf ¼ 0.2Er and
0.4Er, spin polarization Pðq; tÞ shows a ring pattern
surrounding the Γ point, whereas for δf ¼ −0.2Er and
−0.4Er, Pðq; tÞ shows arcs around the corners of the FBZ,
representing a ring surrounding the M point. The straight-
line pattern for δf ¼ 0 separates the δf > 0 and the δf < 0

regime, illustrating the phase transition between [19,20,34].
By comparison, at larger detuning (as δf ¼ �1.0Er for
Ω ¼ 1.0Er, and δf ¼ �1.8Er for Ω ¼ 2.0Er), no dynami-
cal ring pattern appears, implying that the topology of the
postquench band is δf dependent. For 0 < jδfj < δc, with
δc as a critical value, the postquench band is topologically
nontrivial with Chern number C ¼ sgnðδfÞ. For jδfj > δc,
the topology is trivial. These results suggest that ring-
pattern emergence signifies nontrivial topology of the
system, and the ring pattern surrounding the Γ or M point
provides additionally the sign of the Chern number for the
postquench band. The “broken” ring connecting the gapless
Dirac points measures the boundary, across which the
Chern number varies between −1 and þ1.
A theoretical explanation follows. Because of inversion

and C4 symmetry, band topology can be determined by the
products Θ ¼ Q

4
j¼1 sgn½SðΛjÞ� of the lowest s-band Bloch

states, where SðΛjÞ denotes the equilibrium spin polariza-
tion at the four symmetric momenta fΛjg ¼ fΓ;M; X1;2g
[18–20,34]. The value Θ ¼ −1 (þ1) corresponds to the
topological (trivial) state [18]. Thus, the topological regime
necessitates that one of the spin polarizations, SðΓÞ or SðMÞ,
is the opposite of those of the other three. Accordingly, SðqÞ
must change its sign and pass through zerowhen it goes from
the Γ (M) point to the other symmetry points. All of the
momenta in the FBZ with SðqÞ ¼ 0 form a ring that
coincides with the crossing between the spin-up and spin-
down bands for Hðδf;M1;2 → 0Þ. Such a ring is known as
the band-inversion ring [33], across which the spin-up and
spin-down bands are inverted (see the Supplemental
Material [37] and Refs. [38–40] for details). The formation
of this band-inversion ring corresponds to ΔðqÞ ¼ 0 in the
dynamical regime, leading to resonant oscillations between
the spin-up and spin-down states. This oscillation creates the
dynamical ring pattern in Fig. 2. Emergence of the dynami-
cal ring pattern is thus a witness of nontrivial band topology.
We can further extract the Chern number of the post-

quench band from the ring pattern. As all atoms are
initialized in the spin-up state with large detuning of minus
sign, a small δf < 0 implies thatSðΛjÞ flips to spin-down for
only one of the four symmetric momenta of the lowest band.
From Fig. 2(b), we see emergence of the ring pattern
surrounding the M point for the topological regime with
−δc < δf < 0, indicating that the spin polarization of the
lowest band at the M point must be negative SðMÞ < 0,
whereas the other three are positive. Accordingly, the
lowest-band Chern number can be determined directly with
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FIG. 2. Ring structure of spin polarization. (a) Evolution of Pðq; tÞ in the FBZ from t ¼ 0 to 1.6 ms, with parameters ðV0;Ω0Þ ¼
ð4.0; 1.0ÞEr and δf ¼ 0. The upper row is from experimental measurements, and the lower row is from theoretical calculations. (b) Spin
polarization in the FBZ at fixed evolution time t versus δf. The upper row is for ðV0;Ω0Þ ¼ ð4.0; 1.0ÞEr and t ¼ 480 μs, and the lower
row is for ðV0;Ω0Þ ¼ ð4.0; 2.0ÞEr and t ¼ 320 μs.

PHYSICAL REVIEW LETTERS 121, 250403 (2018)

250403-3



C ¼ ½ðΘ − 1Þ=4�P4
j¼1 sgn½SðΛjÞ� ¼ −1 in this regime,

with Θ ¼ −1 [18]. For a final detuning 0 < δf < δc, the
ring pattern encloses the Γ point, leading by similar analysis
to SðΓÞ > 0 and SðX1;2Þ; SðMÞ < 0, and hence C ¼ þ1.
Precisedeterminationof the topological phasediagram.—

Spin dynamics is resonant only on the band-inversion rings,
and we can determine the phase diagram of the band
topology by measuring the size of the ring pattern as
a function of δf. Experimental data for ðV0;Ω0Þ ¼
ð4.0; 1.0ÞEr and ð4.0; 2.0ÞEr are shown in Fig. 3, in which
the distance r between the Γ point and the ring is plotted
versus the detuning δf. As δf is varied from 0 to δþc , the size
of the ring pattern shrinks and then disappears at the Γ point
for δf ¼ δþc , giving the upper boundary of the topological
zone. On the other side, as δf varies from 0 to δ−c , the
distance r increases until the ring pattern disappears at the
M point (r ¼ R) for δf ¼ δ−c , giving the lower boundary. A
polynomial fit up to third order gives the phase boundaries
as ðδþc ; δ−c Þ ¼ ð0.82� 0.03;−0.81� 0.05ÞEr and ð1.15�
0.04;−1.11� 0.05ÞEr for ðV0;Ω0Þ ¼ ð4.0; 1.0ÞEr and
ð4.0; 2.0ÞEr, respectively.
With these measurements, we obtain the full topological

phase diagram, shown in Figs. 4(a) and 4(b). Remarkably,
the estimated phase boundary is highly consistent with the
theoretical calculation over the entire parameter range. The
lattice depth V0 ¼ 4.0Er is very small, so higher-band
effects can become relevant for longer-time dynamics and
at equilibrium. The high precision, achieved by the present
dynamical approach, demonstrates its great advantage over
previous approaches at equilibrium [19,20], where the
measured topological phase diagram deviates from the
theoretical prediction [36].
Long-time dynamics.—Beyond the emergent ring struc-

ture evident during the initial unitary evolution, spin
polarization Pðq; tÞ displays intriguing long-time dynamics

(for details, see the Supplemental Material [37] and
Refs. [41,42]). Spin polarization is oscillatory with
q-dependent frequencies ωðqÞ and eventually relaxes
to its equilibrium value. Measuring ωðqÞ throughout the
FBZ allows us to reconstruct the band structure of the
HamiltonianHðδfÞ [37]. Further,Pðq; t ≫ 0Þwould change
(keep) its sign for a q outside (inside) the ring, directly
revealing the topology of the postquench Hamiltonian.
Conclusion and discussion.—In this Letter, we show that

quantum quench dynamics provides a robust and power-
ful method to uncover topology of cold-atom systems.
A topological (trivial) phase of a 2D system is simply
identified from emergence (absence) of a 1D ring structure,
and the Chern number is read out according to whether the
ring encloses the Γ or theM points. Measuring the ring size,
versus the two-photon detuning δf, leads to a highly precise
determination of the full topological phase diagram. Our
method is insensitive to imperfect conditions such as thermal
effects and, further, remains valid in the presence of weak
interactions as long as the band-inversion ring is well defined.
By inferring topology of a 2D system from a 1D ring, we

demonstrate that a higher-dimensional topological system
can be characterized by a lower-dimensional invariant
[38–40]. This approach was proposed to generic topological
phases and yield a fundamental dynamical classifica-
tion theory of topological quantum states [33]. Our work
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establishes an insightful and powerful approach to explore
novel topological quantum states with nonequilibrium
dynamics.
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