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Determining an unknown quantum state from an ensemble of identical systems is a fundamental, yet
experimentally demanding, task in quantum science. Here we study the number of measurement bases
needed to fully characterize an arbitrary multimode state containing a definite number of photons, or an
arbitrary mixture of such states. We show this task can be achieved using only linear optics and photon
counting, which yield a practical though nonuniversal set of projective measurements. We derive the
minimum number of measurement settings required and numerically show that this lower bound is
saturated with random linear optics configurations, such as when the corresponding unitary transformation
is Haar random. Furthermore, we show that for N photons, any unitary 2N design can be used to derive an
analytical, though nonoptimal, state reconstruction protocol.
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Introduction.—An unknown quantum state can be deter-
mined by making a set of suitable measurements on
identically prepared copies [1–5]. This procedure, known
as quantum state tomography, is a fundamental concept in
quantum science with wide ranging applications. For
example, tomography allows one to assess quantum sys-
tems for use in quantum information processing by
quantifying resources such as entanglement [6], quantum
correlations [7], and coherence [8]. Indeed, since most
measures of these resources require complete knowledge of
the density matrix describing a system, full quantum
tomography is often necessary. Similarly, tomography
can be applied to quantum sensing [9,10] to evaluate the
capacity of a quantum probe state to yield enhanced
measurement precision [11,12].
A well-established framework for photonic quantum

information uses a single photon and multiple modes to
encode discrete-variable quantum states. A qubit may be
encoded using a single-photon, two-mode state [13], and a
qudit may be encoded by incorporating additional modes
[14]. Multiqubit states of this form have been employed
widely, including entanglement-based quantum-key distri-
bution [15], quantum simulation [16], tests of quantum
nonlocality [17], entanglement generation [18], and linear
optical quantum computing [19]. For these states, optical
tomography can be readily achieved using combinations of
single-qudit measurements [2,20], which require only linear
optics and single-photon detection. Exact reconstruction
of N qubits can thus be achieved using 2N þ 1 measurement
bases. Using this method, full tomography of up to six
single-photon qubits has been demonstrated [21].
However, this approach to optical tomography does not

apply to more general states of multiple modes containing a
definite total number of photons. In this case, a mode may
contain multiple photons, which enables new applications

including approaches to quantum sampling [22], imaging
[23], and error correction [24,25]. An alternate approach to
state tomography for such states is to use balanced homo-
dyne detection and well-developed continuous-variable
algorithms to reconstruct the phase-space Wigner function
[26–28]. In the general continuous variable setting, however,
only partial reconstruction is possible with a finite number
of measurement settings. Furthermore, this detection
scheme adds substantial experimental requirements, includ-
ing access to a mode-matched, multimode phase-stable local
oscillator. In contrast, since the state has a definite photon
number, tomographically complete measurements can theo-
retically be formulated using a finite number of measurement
bases. Whether or not these measurement bases can be
achieved using photon counting, though, has not been
previously known.
Here we prove that an arbitrary state of N indistinguish-

able photons inMmodes can be reconstructed using a finite
number of measurement bases that correspond to different
configurations of an M-mode linear-optical interferometer
followed by photon counting. Notably, this result is not
limited to states that can be created from Fock states using
linear optics. Furthermore, we derive a minimal number of
interferometer configurations required for a givenN andM.
Our results extend to arbitrary mixtures of states with

fixed, but possibly different, number of photons and to
measurement strategies that incorporate additional modes
through the use of ancillary vacuum states. As the number
of measured modes increases, the required number of
interferometer configurations decreases, eventually reach-
ing one. In this limit, our work relates to previous studies
of tomography using a single measurement basis in an
extended Hilbert space [29,30], a concept first applied
experimentally to nuclear spins [31] and then to single-
photon qubits measured using a multimode quantum walk
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[32,33]. The latter approach was recently extended to two-
photon, two-mode states using a six-mode interferometer
and it was conjectured this method would work for larger
systems [34,35]. Related work has investigated how the
number of additional modes required for high-fidelity state
estimation depends on the purity of the input state [36].
Our results generalize these photonic studies that use a
single measurement configuration by proving tomographic
feasibility, deriving a bound on the minimum number
of measurement modes, and providing an explicit
reconstruction protocol.
We numerically show that use of random interferometer

configurations, in particular those corresponding to Haar-
random transformations, enable tomography using the
minimum number of configurations. Additionally, we
derive an analytical algorithm for state tomography that
employs any unitary 2N-design [37], thus generalizing a
known result for qudit systems [38] to the multiphoton
case. While unitary designs are not optimal for our task, an
advantage is they have been extensively studied in the past
for their relevance in many quantum information theory
protocols [39] and quantummetrology [40]. Indeed, unitary
designs can be obtained either with random circuits
[41–44], random basis switching [45] or, more physically,
by applying random pulses to a controllable system [46].
Feasibility of tomography.—Consider a generic quantum

state of N indistinguishable photons in M modes. Our goal
is to completely characterize the state by measuring
multiple copies of it using linear optics and photon
counting, as illustrated in Fig. 1. In this approach, a
measurement basis corresponds to a particular configura-
tion of linear optics. We also allow for measurements over
M0 ≥ M modes, achieved by appending M0 −M vacuum
modes to the state of interest. Our first main result is that
full tomography can always be achieved using a finite
number of measurement configurations:
Theorem 1: An N-photon, M-mode state can be recon-

structed using photon counting and an M-mode linear
optical interferometer with a finite number R of configu-
rations, where

R <

�
N þM2 − 1

N

�
2

: ð1Þ

The theorem is proved by building an explicit
reconstruction algorithm. Let jνi be the multimode Fock
basis jνi≡ jk1;…; kMi, where kj is the number of particles
in mode j and

P
jkj ¼ N, while we use a prime to denote a

Fock basis jν0i≡ jk1;…; kM0 i, where the number of output
modes M0 may be higher than the number of inputs M.
Moreover, let UðgÞ be a set of available unitary operations
that can be made in the system. In linear optics the most
general SUðM0Þ transformation can be obtained with a
collection of beam splitters and phase shifters [47], as
shown in Fig. 1. Such transformation can be expressed

in the second quantized notation as UðgÞ ¼ ei
P

kl
Hkla

†
kal ,

where g ¼ eiH is a M0 ×M0 unitary matrix.
State tomography requires reconstruction of the state ρ

from measurement outcomes, each specified by a series
of photon counts ν0. These outcome probabilities are
readily calculated as pν0;g ¼ hν0jUðgÞ†ρUðgÞjν0i for a
specified interferometer configuration g. Expanding the
above equation gives

pν0;g ¼
X
α;β

hν0jUðgÞ†jαihαjρjβihβjUðgÞjν0i≡ ½LðρÞ�ν0;g;

ð2Þ

with the superoperator Lν0g;αβ ¼ hν0jUðgÞ†jαihβjUðgÞjν0i.
The superoperator L is constructed using different con-
figurations gj, with j ¼ 1;…; R. The numbers α and β
index the elements of the Fock space, whose dimension is
DN;M ¼ ðNþM−1

N Þ, while ν0 ¼ 1;…; DN;M0 . As such, L is
normally a rectangular operator. Tomography is possible if
there is a large enough R such that the linear system
[Eq. (2)] admits a unique solution for any p. A unique
solution is obtained [48] when the Gramian matrix L†L has
full rank. In this case, the best reconstruction algorithm [48]
is given by the pseudo-inverse ρbest ≔ ðL†LÞ−1L†½p�,
which is always the best fit solution that minimizes the
least-square error.
For any linear optics configuration g, the matrix elements

hβjUðgÞjν0i can be calculated exactly, either using combi-
natorial expressions or matrix permanents [22,49,50]:
for jαi ¼ ja1; a2;…i and jβi ¼ jb1; b2;…i, one finds
hαjUðgÞjβi ¼ perðgfα;βgÞ=

ffiffiffiffiffiffiffiffiffi
α!β!

p
where α! ¼ a1!a2!…,

and similarly for β!, while gfα;βg is the N × N matrix
obtained by copying ai times the ith columns of g, and bj
times the jth row of g. Although the computation of the
matrix permanent is #P-hard, it is still possible for the
values of N and M available in near-term devices [51].
Moreover, there are cases for which specific values of the
permanent can be computed analytically [52–54]. In the
worst case, without making any simplifications about

FIG. 1. Tomography of a generic unknown state ρ of N photons
in M modes. Our protocol uses configurations of an M0-mode
linear optical interferometer followed by photon counting. When
M0 > M, vacuum modes are appended to the state ρ.
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the permanents, in the Supplemental Material [55] we
show that the number of operations to reconstruct the state
from Eq. (2) is O(polyðDN;M; 2NÞ). Therefore, as in qubit
systems, the difficulty is mostly due to exponentially
growing Hilbert space, rather than to the complexity of
the permanent.
Given the above framework, we now sketch our proof of

Theorem 1, which is elaborated in the Supplemental
Material [55]. In particular, we show that with interferom-
eter configurations fgjgj¼1;…;R corresponding to a unitary
2N-design, exact reconstruction is possible from exper-
imental measurements of pν0;gj for all j ¼ 1;…; R. Our
theorem then follows from known properties of unitary
designs [37]: they exist for all N and M, and their size is
bounded by R < D2

N;M2.
To connect our tomographic task to unitary designs, we

first note that the matrix L is composed by UðgÞ ⊗ UðgÞ�
matrices. Although UðgÞ is an irreducible representation of
g, UðgÞ ⊗ UðgÞ� is not, and indeed it can be written as a
direct sum of Wigner-D matrices Dλr

m;m0 where λr refer to
different irreducible representations andm,m0 are Gelfand-
Tsetlin patterns that index the different states (see
Supplemental Material [55]). Since the matrices Dλr

m;m0 ðgÞ
are orthogonal over g and L ∝ DðgÞ, one can use the matrix
DðgÞ� to construct an operator Xν0

αβðgÞ such that

hαjρjβi ¼ P
ν0
R
dgXν0

αβðgÞpν0;g, where pν0;g are the out-
come probabilities in Eq. (2).
Tomography is therefore achieved via a formal average

over the continuous group. However, this is not practical as
it would require an infinite number of measurement
configurations. Instead we use the theory of weighted
unitary designs [37], to replace the continuous average
with a discrete average over a discrete set of unitaries gj. A
q-design is a discrete set of unitaries such that the weighted
average of group functions fðgÞ over those unitaries is
equal to the average over the continuous group

R
dgfðgÞ,

provided that fðgÞ is a polynomial of at most degree q in g
and g�. Since the matricesDðgÞ are a polynomial of at most
degree N in g and g�, one can choose any weighted 2N-
design protocol to analytically perform full-state tomog-
raphy, as shown in the Supplemental Material [55]. Calling
gj those unitaries, hαjρjβi ¼ P

ν0;j X
ν0
αβðgjÞpν0;gj . This con-

cludes the proof of Theorem 1. We note, however, that
unitary 2N-designs satisfy a more stringent requirement
than the simpler inversion of Eq. (2), and consequently, this
approach is generally not optimal in terms of the number
of measurement configurations used. Theorem 1 can be
trivially extended to mixtures ρ ¼ PNmax

N¼1 πNρN where ρN
is an M-mode N-photon state, as each N-photon state
can be reconstructed independently via postselection (see
Supplemental Material [55]).
Minimum measurement configurations.—We now con-

sider the minimum number of linear optics configurations

R required to achieve tomography. Our second main result
gives a lower bound on the number of configurations
required:
Theorem 2: An N-photon, M-mode state can be recon-

structed with photon counting and an M-mode linear
optical interferometer using at least

RN;M ¼
�
N þM

N

�
−
�
N þM − 2

M

�
ð3Þ

configurations. More generally, for an interferometer with
M0 > M modes and ancillary vacuum states, the minimal
number of reconfigurations is

RN;M;M0 ¼
�ðN þM − 2Þ!ðM0 − 2Þ!
ðN þM0 − 2Þ!ðM − 2Þ!RN;M

�
; ð4Þ

where [x] is the smallest integer greater than or equal to x.
Equation (3) shows that the number of measurement

configurations is larger than estimated from a simple
counting argument. In particular, the number of M-mode
Fock states with N total photons, DN;M ¼ ðNþM−1

N Þ, gives
the dimension of the symmetric Hilbert space. A generic
state is thus specified by D2

N;M − 1 independent elements.
A single measurement configuration involves DN;M

different outcomes, which provide DN;M − 1 independent
parameters. Therefore, one may expect that DN;M þ 1

configuration may be sufficient for full state reconstruction.
Instead, our theorem shows a larger number is required,
RN;M > DN;M þ 1. This increased requirement is due to
linear optics providing only a subset of the possible unitary
operations on the multiparticle state. Nonetheless, complete
tomography with a smaller set of configurations is possible
with ancillary output modes, as RN;M;M0 < DN;M þ 1 <
RN;M for any M0 > M.
For the two-mode case,M ¼ 2, an explicit measurement

protocol which saturates our bound RN;2 ¼ 2N þ 1 is
known [61]. This protocol exploits the Schwinger boson
formalism that maps our problem onto the tomography of a
spin S ¼ N=2, allowing the use of known algorithms for
large spin systems [48,62,63]. However, this approach
exploits properties of SU(2) representations that cannot
be easily adapted to larger M [64,65]. Our theorem
generalizes the above construction to the general multi-
mode case.
Two proofs of Theorem 2 are presented in the

Supplemental Material [55], one based on representation
theory and one based on irreducible tensors. Here we
briefly describe the main steps of the second proof.
Measuring diagonal elements in the Fock basis is equiv-
alent to the measurement of all the expectation values of
polynomials of number operators Tk

k ¼ a†kak. According
to Wick’s theorem, all independent polynomials in the
number operators can be written via the rank r tensors
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Tk1;…;kr
k1;…;kr

¼ a†k1 � � �a
†
kr
ak1 � � � akr . However, not all hTk1;…;kr

k1;…;kr
i

are independent. For instance, if one measures hTk
ki for

k ¼ 1;…;M − 1, then one gets hTM
Mi ¼ N −

P
M−1
k¼1 hTk

ki
without further measurements. In the Supplemental
Material [55] we show that the number of independent
rank-r tensors is Dr;M−1. Their expectation values for
r ¼ 1;…; N completely and uniquely specify photodetec-
tion measurements. Similarly, the full state is completely
and uniquely specified by the expectation value of the
tensors Tk1;…;kr

l1;…;lr
¼ a†k1 � � � a

†
kr
al1 � � � alr . The number of

such independent rank-r tensors is D2
r;M −D2

r−1;M.
Tomography then consists in reconstructing the expect-

ation value of off-diagonal tensors from the measurement
of hTk1;…;kr

k1;…;kr
i after different configurations UðgÞ. Since

the latter corresponds to hUðgÞ†Tk1;…;kr
k1;…;kr

UðgÞi ¼
½g†⊗rhTig⊗r�k1;…;kr

k1;…;kr
, all off-diagonal tensors with different

rank r can be reconstructed independently for r ¼ 1;…; N.
The most difficult tensor to reconstruct is then that with
r ¼ N. Via dimensional counting, this reconstruction
requires ½D2

N;M−D2
N−1;M�=DN;M−1≡RN;M transformations.

Equation (3) follows by assuming that the same configu-
rations are sufficient for reconstructing an even lower
rank tensor. This latter assumption is the reason why
Eq. (3) is a lower bound. Similarly, Eq. (4) appears
for a different number of modes as RN;M;M0 ¼ ½ðD2

N;M−
D2

N−1;MÞ=DN;M0−1�≡ ½RN;MDN;M−1=DN;M0−1�.
Theorem 2 can be extended to mixtures ρ ¼ PNmax

N¼1 πNρN
where ρN is a M-mode N-photon state. In this case,
the minimal number of settings is maxN≤Nmax

RN;M;M0 (see
Supplemental Material [55]). Theorem 2 also determines
the number of ancillary modes needed to achieve tomog-
raphy with a single measurement configuration:
Corollary: An N-photon, M-mode state can be recon-

structed with a single configuration of an M0-mode linear
optical interferometer if

DN;M0−1 ≥ D2
N;M −D2

N−1;M ¼ RN;MDN;M−1: ð5Þ

The scaling of Eq. (5) can be investigated for largeN and
M using the entropic expansion ðnkÞ ≈ 2nH2ðk=nÞ, where
H2ðxÞ ¼ −x log2 x − ð1 − xÞ log2ð1 − xÞ is the binary
entropy. If additionallyN ≫ M, we find that RN;MDN;M−1≈
N2M−3, and DN;M0−1 ≈ NM0−2. Therefore the minimum
number of measurement modes required is given by

M0 ≳N≫M
2M − 1: ð6Þ

In this limit, tomography can be achieved using a single
measurement configuration with photon counting over
twice as many modes as the input state, and this result
is independent of N.

In the opposite limit N ≪ M, we approximate ðNþM
M Þ ≈

MN=N! to find

M0 ≳N≪M M2ffiffiffiffiffiffi
N!N

p : ð7Þ

This seemingly counterintuitive result shows that the
required number of measured modes decreases as the
number of photons increases. This is due to the large
increase in the number of measurement outcomes that
results from an increase in the number of photons.
Practical implementation.—We have done extensive

numerical experiments showing that the bound Eq. (3) is
achieved by Haar-random configurations fgαgα¼1;…;R,
which can be implemented using programmable interfer-
ometers [66,67]. In particular, we find that L has full-rank
D2

N;M only when RN;M, or more, configurations are used.
For M0 > M, we find that the lower bound Eq. (4) is
achievable with RN;M;M0 , or slightly more, configurations.
The slightly larger number of configurations or modes
required for full tomography when M0 ≠ M may be due to
the simple reconstruction algorithm, which does not
explicitly take into account independent components and
normalization.
The minimum number of measurement modes M0

required for a single interferometer is shown in Fig. 2,
which shows agreement of numerical results calculated
using a single sample from the Haar distribution and the
minimal number that satisfies Eq. (6). As predicted by
Eq. (7), M0 initially decreases as a function of N and
then becomes constant for N ≈M. When N ≈M, we find
H2 ≈ 1 and hence M0 ≳ αM, thus confirming the scaling

FIG. 2. Number of measurement output modes required for full
tomography with a single experimental setup. The lower bound
(b) is estimated from the minimal M0 that satisfies Eq. (5). The
observed numerical value (n) is obtained from the minimal M0
such that Eq. (2) is invertible. For M ¼ 2 we always observe
M0 ¼ 4, consistently with Eq. (5).
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relation Eq. (6), and its independence onN, although with a
larger α > 2. Based on these numerical experiments, we
conjecture that with a single Haar-random configuration
one can perform full reconstruction with a number of
measurement modes that increases linearly with M.
In a realistic experiment, the number of detected photons

will sometimes fluctuate, either because of imperfect
photon sources (where N-photon states ρN are generated
with probability πN), photon losses [68], or imperfect
detector efficiency [69,70]. When there are either imperfect
sources or losses, the subset of detection events containing
exactly the right number of photons is sufficient to
reconstruct the state, provided these events occur at an
acceptable rate. On the other hand, if losses are low and
well characterized, one can use all the measured data to
reconstruct the entire state ρ ¼ PNmax

N¼1 πNρN as we show in
the Supplemental Material [55].
Single-photon detectors (SPDs) that merely distinguish

between vacuum and nonvacuum states are often employed
in realistic experiments, instead of true photon-counting
detectors. To achieve sensitivity to the photon number, a
nondeterministic number resolving detector (NRD) can be
built by multiplexing SPDs using linear optics and ancillary
vacuum states [71–73]. We note that this concept is
consistent with the scheme shown in Fig. 1, and therefore
for sufficiently large M0, complete state reconstruction can
be achieved with SPDs. Since a NRD sensitive to N
photons requires N SPDs, Eq. (6) implies that OðNMÞ
SPDs are required. For N ≪ M fewer SPDs are required,
due to the vanishing probability that multiple photons
emerge in the same mode of a random interferometer
with M > OðN2Þ [22]. More precisely, from Eq. (7) we
get M0 > OðM2N=

ffiffiffiffiffiffi
N!N

p Þ ≈ OðM2Þ.
Conclusion.—We have studied the feasibility and

number of measurement configurations required to per-
form quantum tomography of a multimode multiphoton
Fock state using linear optics and photon counting. We
have shown that any such state can be tomographically
reconstructed with a finite number of linear optics
configurations (Theorem 1). To do so, we show that
configurations corresponding to any unitary 2N-design
[37] define an analytical, thought nonoptimal,
reconstruction protocol. Moreover, Theorem 2 quantifies
the minimal number of configurations, even when the
number of detectors M0 is larger than M. For sufficiently
many detectors, as specified by Eq. (5), this leads to
tomography with a single measurement configuration.
Our results can be used to test the optimality of
tomography protocols with a finite number of particles.
For instance, the two-photon protocol presented in
Ref. [61] saturates our bound, and is therefore optimal.
Finally, we presented a simple reconstruction algorithm
based on Haar sampled unitary configurations, and we
have observed that it is optimal for M0 ¼ M and nearly
optimal for M0 > M.

The authors thank S. Filippov, S. Paesani, R. Santagati,
N. Spagnolo, and B. Yadin, for discussions. This work is
supported by the UK EPSRC Grant No. EP/K034480/1.
M. S. K. thanks the Royal Society, the KIST Institutional
Program (2E26680-18-P025), and the Samsung GRO grant
for their financial support.

[1] G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, Quantum
tomography, Adv. Imaging Electron Phys. 128, 206 (2003).

[2] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White,
Measurement of qubits, Phys. Rev. A 64, 052312 (2001).

[3] K. Banaszek, G. M. Dariano, M. G. A. Paris, and M. F.
Sacchi, Maximum-likelihood estimation of the density
matrix, Phys. Rev. A 61, 010304 (1999).

[4] M. Christandl and R. Renner, Reliable Quantum State
Tomography, Phys. Rev. Lett. 109, 120403 (2012);
arXiv:1108.5329.

[5] H. Paul, P. Törmä, T. Kiss, and I. Jex, Photon Chopping:
New Way to Measure the Quantum State of Light, Phys.
Rev. Lett. 76, 2464 (1996).

[6] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[7] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson,
Unified View of Quantum and Classical Correlations, Phys.
Rev. Lett. 104, 080501 (2010).

[8] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium:
Quantum coherence as a resource, Rev. Mod. Phys. 89,
041003 (2017).

[9] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Rev. Mod. Phys. 89, 035002 (2017).

[10] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U.
Marzolino, M.W Mitchell, and S. Pirandola, Quantum
enhanced measurements without entanglement, Rev. Mod.
Phys. 90, 035006 (2018).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in
quantum metrology, Nat. Photonics 5, 222 (2011).

[12] M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S.
Kolthammer, M. S. Kim, A. Datta, M. Barbieri, and I. A.
Walmsley, Joint estimation of phase and phase diffusion for
quantum metrology, Nat. Commun. 5, 3532 (2014).

[13] I. L. Chuang and Y. Yamamoto, Simple quantum computer,
Phys. Rev. A 52, 3489 (1995).

[14] N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien,
G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White,
Measuring Entangled Qutrits and Their Use for Quantum
Bit Commitment, Phys. Rev. Lett. 93, 053601 (2004).

[15] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[16] I. Pitsios, L. Banchi, A. S Rab, M. Bentivegna, D. Caprara,
A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame
et al., Photonic simulation of entanglement growth and
engineering after a spin chain quench, Nat. Commun. 8,
1569 (2017).

[17] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[18] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk,
A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska,

PHYSICAL REVIEW LETTERS 121, 250402 (2018)

250402-5

https://doi.org/10.1016/S1076-5670(03)80065-4
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.61.010304
https://doi.org/10.1103/PhysRevLett.109.120403
http://arXiv.org/abs/1108.5329
https://doi.org/10.1103/PhysRevLett.76.2464
https://doi.org/10.1103/PhysRevLett.76.2464
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevLett.104.080501
https://doi.org/10.1103/PhysRevLett.104.080501
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/ncomms4532
https://doi.org/10.1103/PhysRevA.52.3489
https://doi.org/10.1103/PhysRevLett.93.053601
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1038/s41467-017-01589-y
https://doi.org/10.1038/s41467-017-01589-y
https://doi.org/10.1103/RevModPhys.86.419


D. Bacco et al., Multidimensional quantum entanglement
with large-scale integrated optics, Science 360, eaar7053
(2018).

[19] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling,
and G. J. Milburn, Linear optical quantum computing with
photonic qubits, Rev. Mod. Phys. 79, 135 (2007).

[20] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro,
Qudit quantum-state tomography, Phys. Rev. A 66, 012303
(2002).

[21] C. Schwemmer, G. Tóth, A. Niggebaum, T. Moroder, D.
Gross, O. Gühne, and H. Weinfurter, Experimental Com-
parison of Efficient Tomography Schemes for a Six-Qubit
State, Phys. Rev. Lett. 113, 040503 (2014).

[22] S. Aaronson and A. Arkhipov, The computational complex-
ity of linear optics, in Proceedings of the Forty-Third
Annual ACM Symposium on Theory of Computing
(ACM, San Jose, CA, 2011), pp. 333–342.

[23] P. C. Humphreys, M. Barbieri, A. Datta, and I. A. Walmsley,
Quantum Enhanced Multiple Phase Estimation, Phys. Rev.
Lett. 111, 070403 (2013).

[24] I. L. Chuang, D. W. Leung, and Y. Yamamoto, Bosonic
quantum codes for amplitude damping, Phys. Rev. A 56,
1114 (1997).

[25] W. Wasilewski and K. Banaszek, Protecting an optical
qubit against photon loss, Phys. Rev. A 75, 042316
(2007).

[26] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani,
Measurement of the Wigner Distribution and the Density
Matrix of a Light Mode using Optical Homodyne Tomog-
raphy: Application to Squeezed States and the Vacuum,
Phys. Rev. Lett. 70, 1244 (1993).

[27] G. M. Dariano, M. F. Sacchi, and P. Kumar, Universal
homodyne tomography with a single local oscillator, Phys.
Rev. A 61, 013806 (1999).

[28] A. I. Lvovsky andM. G. Raymer, Continuous-variable optical
quantum-state tomography, Rev. Mod. Phys. 81, 299 (2009).

[29] G. M. D’Ariano, Universal quantum observables, Phys.
Lett. A 300, 1 (2002).

[30] A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen,
Determining a Quantum State by Means of a Single
Apparatus, Phys. Rev. Lett. 92, 120402 (2004).

[31] J. Du, M. Sun, X. Peng, and T. Durt, Realization
of entanglement-assisted qubit-covariant symmetric-
informationally-complete positive-operator-valued mea-
surements, Phys. Rev. A 74, 042341 (2006).

[32] Y.-y. Zhao, N.-k. Yu, P. Kurzyński, G.-y. Xiang, C.-F. Li,
and G.-C. Guo, Experimental realization of generalized
qubit measurements based on quantum walks, Phys. Rev. A
91, 042101 (2015).

[33] Z. Bian, J. Li, H. Qin, X. Zhan, R. Zhang, B. C. Sanders, and
P. Xue, Realization of Single-Qubit Positive-Operator-
Valued Measurement Via a One-Dimensional Photonic
Quantum Walk, Phys. Rev. Lett. 114, 203602 (2015).

[34] J. G. Titchener, A. S. Solntsev, and A. A. Sukhorukov,
Two-photon tomography using on-chip quantum walks,
Opt. Lett. 41, 4079 (2016).

[35] J. Titchener, M. Gräfe, R. Heilmann, A. Solntsev, A.
Szameit, and A. Sukhorukov, Scalable on-chip quantum
state tomography, npj Quantum Inf. 4, 19 (2018).

[36] D. Oren, M. Mutzafi, Y. C. Eldar, and M. Segev, Quantum
state tomography with a single measurement setup, Optica
4, 993 (2017).

[37] A. Roy and A. J. Scott, Unitary designs and codes, Des.
Codes Cryptogr. 53, 13 (2009).

[38] A. Roy and A. J. Scott, Weighted complex projective
2-designs from bases: Optimal state determination by
orthogonal measurements, J. Math. Phys. (N.Y.) 48,
072110 (2007).

[39] A. Ambainis and J. Emerson, Quantum t-designs: t-wise
independence in the quantum world, in Computational
Complexity, 2007, CCC’07, Twenty-Second Annual IEEE
Conference on (IEEE, 2007), pp. 129–140.

[40] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A.
Acin, and M. Lewenstein, Random Bosonic States for
Robust Quantum Metrology, Phys. Rev. X 6, 041044
(2016).

[41] P. Hayden, D. Leung, P. W. Shor, and A. Winter, Random-
izing quantum states: Constructions and applications, Com-
mun. Math. Phys. 250, 371 (2004).

[42] F. G. S. L. Brandao, A. W. Harrow, andM. Horodecki, Local
random quantum circuits are approximate polynomial-
designs, Commun. Math. Phys. 346, 397 (2016).

[43] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact
and approximate unitary 2-designs and their application to
fidelity estimation, Phys. Rev. A 80, 012304 (2009).

[44] W. G. Brown and L. Viola, Convergence Rates for Arbitrary
Statistical Moments of Random Quantum Circuits, Phys.
Rev. Lett. 104, 250501 (2010).

[45] Y. Nakata, C. Hirche, M. Koashi, and A. Winter,
Efficient Quantum Pseudorandomness with Nearly Time-
Independent Hamiltonian Dynamics, Phys. Rev. X 7,
021006 (2017).

[46] L. Banchi, D. Burgarth, and M. J. Kastoryano, Driven
Quantum Dynamics: Will It Blend?, Phys. Rev. X 7,
041015 (2017).

[47] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S.
Kolthammer, and I. A. Walmsley, Optimal design for
universal multiport interferometers, Optica 3, 1460 (2016).

[48] G. Klose, G. Smith, and P. S. Jessen, Measuring the
Quantum State of a Large Angular Momentum, Phys.
Rev. Lett. 86, 4721 (2001).

[49] S. Scheel, Permanents in linear optical networks, arXiv:
quant-ph/0406127.

[50] L. C. Biedenharn, R. A. Gustafson, and S. C. Milne, UðnÞ
Wigner coefficients, the path sum formula, and invariant
g-functions, Adv. Appl. Math. 6, 291 (1985).

[51] A. Neville, C. Sparrow, R. Clifford, E. Johnston, P. M.
Birchall, A. Montanaro, and A. Laing, Classical boson
sampling algorithms with superior performance to near-term
experiments, Nat. Phys. 13, 1153 (2017).

[52] M. C. Tichy, K. Mayer, A. Buchleitner, and K. Mølmer,
Stringent and Efficient Assessment of Boson-Sampling
Devices, Phys. Rev. Lett. 113, 020502 (2014).

[53] C. Dittel, R. Keil, and G. Weihs, Many-body quantum
interference on hypercubes, Quantum Sci. Technol. 2,
015003 (2017).

[54] N. Viggianiello, F. Flamini, L. Innocenti, D. Cozzolino, M.
Bentivegna, N. Spagnolo, A. Crespi, D. J. Brod, E. F.

PHYSICAL REVIEW LETTERS 121, 250402 (2018)

250402-6

https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevLett.113.040503
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.75.042316
https://doi.org/10.1103/PhysRevA.75.042316
https://doi.org/10.1103/PhysRevLett.70.1244
https://doi.org/10.1103/PhysRevA.61.013806
https://doi.org/10.1103/PhysRevA.61.013806
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1016/S0375-9601(02)00752-1
https://doi.org/10.1016/S0375-9601(02)00752-1
https://doi.org/10.1103/PhysRevLett.92.120402
https://doi.org/10.1103/PhysRevA.74.042341
https://doi.org/10.1103/PhysRevA.91.042101
https://doi.org/10.1103/PhysRevA.91.042101
https://doi.org/10.1103/PhysRevLett.114.203602
https://doi.org/10.1364/OL.41.004079
https://doi.org/10.1038/s41534-018-0063-5
https://doi.org/10.1364/OPTICA.4.000993
https://doi.org/10.1364/OPTICA.4.000993
https://doi.org/10.1007/s10623-009-9290-2
https://doi.org/10.1007/s10623-009-9290-2
https://doi.org/10.1063/1.2748617
https://doi.org/10.1063/1.2748617
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1103/PhysRevX.6.041044
https://doi.org/10.1007/s00220-004-1087-6
https://doi.org/10.1007/s00220-004-1087-6
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1103/PhysRevLett.104.250501
https://doi.org/10.1103/PhysRevLett.104.250501
https://doi.org/10.1103/PhysRevX.7.021006
https://doi.org/10.1103/PhysRevX.7.021006
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1103/PhysRevLett.86.4721
https://doi.org/10.1103/PhysRevLett.86.4721
http://arXiv.org/abs/quant-ph/0406127
http://arXiv.org/abs/quant-ph/0406127
https://doi.org/10.1016/0196-8858(85)90015-6
https://doi.org/10.1038/nphys4270
https://doi.org/10.1103/PhysRevLett.113.020502
https://doi.org/10.1088/2058-9565/aa540c
https://doi.org/10.1088/2058-9565/aa540c


Galvao, and R. Osellame et al., Experimental generalized
quantum suppression law in sylvester interferometers,
New J. Phys. 20, 033017 (2018).

[55] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.250402 for the
proofs of the main theorems, the study of imperfect photon
sources and detectors, and other detailed analyses. Supple-
mental Material contains extra Refs. [56–60].

[56] A. Alex, M. Kalus, A. Huckleberry, and J. von Delft, A
numerical algorithm for the explicit calculation of su(n) and
sl(n, c) clebsch–gordan coefficients, J. Math. Phys. (N.Y.)
52, 023507 (2011).

[57] M. Moshinsky, Gelfand states and the irreducible represen-
tations of the symmetric group, J. Math. Phys. (N.Y.) 7, 691
(1966).

[58] N. J. Vilenkin and A. U. Klimyk, Representation of Lie
Groups and Special Functions: Recent Advances (Springer
Science & Business Media, Dordrecht, 2013), Vol. 316.

[59] N. J. Vilenkin and A. U. Klimyk, Representation of Lie
groups and special functions: Volume 3: Classical and
quantum groups and special functions, Vol. 75 (Springer
Science & Business Media, 2013).

[60] H. J. Ryser, Combinatorial Mathematics (Mathematical
Association of America; distributed by Wiley, New York,
1963), Vol. 14.

[61] R. Walser, Measuring the State of a Bosonic Two-
Mode Quantum Field, Phys. Rev. Lett. 79, 4724
(1997).

[62] R. G. Newton and B.-l. Young, Measurability of the spin
density matrix, Ann. Phys. (N.Y.) 49, 393 (1968).

[63] H. F. Hofmann and S. Takeuchi, Quantum-state
tomography for spin-l systems, Phys. Rev. A 69, 042108
(2004).

[64] S. N. Filippov and V. I. Manko, Spin tomography and star-
product kernel for qubits and qutrits, J. Russ. Laser Res. 30,
129 (2009).

[65] S.-H. Tan, Y. Y. Gao, H. de Guise, and B. C. Sanders, Su(3)
Quantum Interferometry with Single-Photon Input Pulses,
Phys. Rev. Lett. 110, 113603 (2013).

[66] N. J. Russell, L. Chakhmakhchyan, J. L. OBrien, and A.
Laing, Direct dialling of haar random unitary matrices, New
J. Phys. 19, 033007 (2017).

[67] R. Burgwal, W. R. Clements, D. H. Smith, J. C. Gates, W. S.
Kolthammer, J. J. Renema, and I. A. Walmsley, Using an
imperfect photonic network to implement random unitaries,
Opt. Express 25, 28236 (2017).

[68] R. García-Patrón, J. J. Renema, and V. Shchesnovich,
Simulating boson sampling in lossy architectures, arXiv:
1712.10037.

[69] H. Lee, U. Yurtsever, P. Kok, G. M. Hockney, C. Adami,
S. L. Braunstein, and J. P. Dowling, Towards photostatistics
from photon-number discriminating detectors, J. Mod. Opt.
51, 1517 (2004).

[70] D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A.
Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D.
Franson, Photon-number-resolving detection using time-
multiplexing, J. Mod. Opt. 51, 1499 (2004).

[71] D. Achilles, C. Silberhorn, C. Śliwa, K. Banaszek, and I. A.
Walmsley, Fiber-assisted detection with photon number
resolution, Opt. Lett. 28, 2387 (2003).

[72] J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, Jr., and M.
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