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The effect of quenched (frozen) disorder on the collective motion of active particles is analyzed. We find
that active polar systems are farmore robust against quenched disorder than equilibrium ferromagnets. Long-
ranged order (a nonzero average velocity hvi) persists in the presence of quenched disorder even in spatial
dimensions d ¼ 3; in d ¼ 2, quasi-long-ranged order (i.e., spatial velocity correlations that decay as a power
law with distance) occurs. In equilibrium systems, only quasi-long-ranged order in d ¼ 3 and short-ranged
order in d ¼ 2 are possible. Our theoretical predictions for two dimensions are borne out by simulations.
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Introduction.—A great deal of the immense current
interest in “active matter” focuses on coherent collective
motion, i.e., “flocking” [1–7], or “swarming” [8,9]. Such
coherent motion occurs over a wide range of length scales:
from macroscopic organisms to mobile macromolecules in
living cells [8–11] and synthetic active particles [12,13] and
in the presence of complex environments [14,15]. Such
coherent motion is possible even in d ¼ 2 [2], in apparent
violation of the Mermin-Wagner theorem [16]. This has
been explained by the “hydrodynamic” theory of flocking
[3–7], which shows that, unlike equilibrium “pointers”,
nonequilibrium “movers” can spontaneously break a con-
tinuous symmetry (rotation invariance) by developing long-
ranged orientational order (as they must to have a nonzero
average velocity hvðr; tÞi ≠ 0), even in noisy systems with
only short-range interactions in dimension d ¼ 2, and in
flocks with birth and death [17].
In equilibrium systems, even arbitrarily weak quenched

random fields destroy long-ranged ferromagnetic order in
all spatial dimensions d ≤ 4 [18–21]. This raises the
question: can the nonlinear, nonequilibrium effects that
make long-ranged order possible in 2D flocks without
quenched disorder stabilize them when random field
disorder is present? Simulations of flocks with quenched
disorder [22,23] find quasi-long-ranged order in d ¼ 2;
that is,

vðr; tÞ · vðr0; tÞ ∝ jr − r0j−η; ð1Þ

where the exponent η is nonuniversal (that is, system
dependent), and the over bar denotes an average over rwith
fixed r − r0.
In this Letter and the companion paper [24], we

address this problem analytically and by simulations. The
analytical approach (the focus of this Letter) extends the

hydrodynamic theory of flocking developed inRefs. [3–7] to
include quenched disorder. Both approaches confirm that
flocks are more robust against quenched disorder than
ferromagnets. Specifically, we find that flocks can develop
long-ranged order in three dimensions, and quasi-long-
ranged order in two dimensions, due to strong nonlinear
effects, in contrast to the equilibrium case, in which only
short-ranged order is possible in two dimensions [18–21],
and only quasi-long-ranged order in three dimensions. We
also determine exact scaling laws for velocity fluctuations
for one range of hydrodynamic parameters in d ¼ 3.
Hydrodynamic theory.—To study the effects of quenched

disorder for flocking, we use the hydrodynamic theory of
Refs. [3–7], modified only by the inclusion of a quenched
random force f. In the thermodynamic limit, the annealed
noise is irrelevant for determining the stability and scaling of
the flocking phase in the presence of the quenched noise, and
is thus neglected in the current study. In the ordered phase
with average speed v0 and an average density ρ0, the velocity
(v) and density (ρ) fields can be written as v ≈ v0ek þ v⊥,
ρ ¼ ρ0 þ δρ, where ek is the unit vector in the direction of
mean flock motion. Plugging these in the original hydro-
dynamic equations (shown in Ref. [24], see also the original
papers Refs. [3–7]), we obtain the following pair of coupled
equations of motion for the fluctuation v⊥ðr; tÞ of the local
velocity of the flock perpendicular to ek, and the departure
δρðr; tÞ of the density from its mean value ρ0:

∂tv⊥ þ γ∂kv⊥ þ λðv⊥ ·∇⊥Þv⊥
¼ −g1δρ∂kv⊥ − g2v⊥∂kδρ − g3v⊥∂tδρ −

c20
ρ0

∇⊥δρ

− g4∇⊥ðδρ2Þ þDB∇⊥ð∇⊥ · v⊥Þ þDT∇2⊥v⊥
þDk∂2

kv⊥ þ νt∂t∇⊥δρþ νk∂k∇⊥δρþ f⊥; ð2Þ
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∂tδρþ ρo∇⊥ · v⊥ þ λρ∇⊥ · ðv⊥δρÞ þ v2∂kδρ

¼ Dρk∂2
kδρþDρv∂kð∇⊥ · v⊥Þ þ ϕ∂t∂kδρ

þ ∂kðw1δρ
2 þ w2jv⊥j2Þ; ð3Þ

where λ and λρ are dimensionless coefficients for the
nonlinear convective terms, DBeff;T;k;ρk;ρv, νt;k are coeffi-
cients for the linear terms (e.g., diffusion terms), g1;2;3;4,w1;2

are nonlinear coupling constants, c0 sets the scale of the
sound speed, and ϕ sets the diffusion length scale. There are
two parameters γ ¼ λv0 and v2 ¼ λρv0 that are particularly
relevant for our current study; they correspond to the speeds
of thevelocity and density fluctuations advected by themean
flocking motion along ek.
To treat quenched disorder, we simply take the random

force to be static, i.e., to depend only on position,
fðr; tÞ ¼ fðrÞ, and not on time t at all, with short-ranged
spatial correlations:

f⊥i ðrÞf⊥j ðr0Þ ¼ Δδ⊥ijδdðr − r0Þ; ð4Þ
where the over bar denotes averages over the quenched
disorder, and δ⊥ij ¼ 1 if and only if i ¼ j ≠ k, and is zero for
all other i, j. We will also assume f⊥ is zero mean, and
Gaussian.
Linearized hydrodynamic theory and anisotropic

fluctuations.—Our first step in analyzing these equations
is to linearize them. We then Fourier transform them in
space and time and decompose the velocity v⊥ along and
perpendicular to the projection q⊥ of q perpendicular to
the mean direction of flock motion: vL ≡ v⊥ · q⊥=q⊥,
vT ≡ v⊥ − vLðq⊥=q⊥Þ. Note that the “transverse” velocity
vT does not exist in d ¼ 2, where there are no directions
that are orthogonal to both q⊥ and the mean direction of
flock motion ek. This has important consequences, as we
will see later.
The set of coupled linear algebraic equations for δρ, vT ,

and vL that we thereby obtain can be solved analytically to
obtain the strength of the fluctuations (details are given in
Ref. [24]):

jvLðqÞj2 ¼
ðΔ̃cos2θqÞq−2

ϵ2ðθqÞq2 þ ðsin2θq − ½γv2=c20�cos2θqÞ2
; ð5Þ

jδρðqÞj2 ¼ ½Δ̃ðρ20=v22Þsin2θq�q−2
ϵ2ðθqÞq2 þ ðsin2θq − ½γv2=c20�cos2θqÞ2

; ð6Þ

jvTðqÞj2 ¼
ðd − 2ÞΔ

γ2q2½ϵ2TðθqÞq2 þ cos2θq�
; ð7Þ

with q the magnitude of the wave vector q and θq the angle
between q and the direction ejj of mean flock motion.
In Eqs. (5)–(7), Δ̃≡ v22Δ=c40 and ϵðθqÞ and ϵTðθqÞ are the

finite direction-dependent damping coefficients (see
Ref. [24] for their expressions).
From Eqs. (5)–(7), we immediately see that there is an

important distinction between the cases γv2 > 0 and
γv2 < 0. In the former case, fluctuations of vL and ρ are
highly anisotropic: they scale like q−2 for all directions of q
except when θq ¼ θc or π − θc, where we have defined
a critical angle of propagation θc ≡ arctan½ ffiffiffiffiffiffiffi

γv2
p

=c0�.
The physical significance of θc is that it is the direction
in which the speed of propagation of longitudinal sound
waves in the flock vanishes [3–6]. For these special

directions (which only exist if γv2 > 0) both jvLðqÞj2
and jδρðqÞj2 scale like q−4. On the other hand, when
γv2 < 0, fluctuations of vL and ρ are essentially isotropic:
they scale as q−2 for all directions of q.
Fluctuations of vT , however, are always anisotropic,

diverging as q−4 for θq ¼ π=2, and as q−2 for all other
directions of q. Of course, there are no such fluctuations in
d ¼ 2, since, as noted earlier, vT does not exist in that case,
as reflected by the factor of (d − 2) in Eq. (7).
These special directions (θc and π=2) dominate the real

space fluctuations jv⊥ðrÞj2 and jδρðrÞj2, which can be

obtained by integrating jδρðqÞj2, jvLðqÞj2, and jvTðqÞj2
over all wave vector q. In particular, we have

jv⊥ðrÞj2 ¼
Z

qd−1dq
Z

dΩqðjvTðqÞj2 þ jvLðqÞj2Þ; ð8Þ

where
R
dΩq denotes an integral over the directions of q.

As shown in Ref. [24], this angular integral scales like q−3

for the vT term in Eq. (8), except, of course, in d ¼ 2, where
that term does not exist. The vL term also scales like q−3

when γv2 > 0, due to the aforementioned divergence of

jvLðqÞj2 as θq → θc. However, it only scales like q−2 when

γv2 < 0, since jvLðqÞj2 does not blow up for any direction
of q in that case.
Hence, if either d > 2 or γv2 > 0, Eq. (8) implies

jv⊥ðrÞj2 ∝
Z

qd−4dq; ð9Þ

which clearly diverges in the long wavelength (i.e., infra-
red, or q → 0) limit for d ≤ 3. Thus, according to the
linearized theory, there should be no long-ranged orienta-
tional order [a nonzero vðrÞ] for d ≤ 3, no matter how
weak the disorder. In the critical dimension d ¼ 3, quasi-
long-ranged order (with algebraic decay of velocity corre-
lations in space) should, again according to the linearized
theory, occur.
However, for the case γv2 < 0 (when jvLðqÞj2 has no

soft directions) and d ¼ 2 (when vT does not exist), we
have
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jv⊥ðrÞj2 ∝
Z

qd−3dq; ð10Þ

which only diverges in d ≤ 2. In d ¼ 2, this divergence is
only logarithmic, suggesting quasi-long-ranged order char-
acterized by Eq. (1).
We thus see that there is a significant difference between

dimension d ¼ 2 and d > 2, and between γv2 > 0 and
γv2 < 0. Thus there are four distinct cases of physical
interest. The linear theory just presented predicts quasi-
long-ranged order for three of these four cases: d ¼ 3 for
both γv2 > 0 and γv2 < 0, and d ¼ 2 for the case γv2 < 0.
For the remaining case, d ¼ 2 and γv2 > 0, the linear
theory predicts only short-ranged order.
However, in the full, nonlinear theory, there is true

long-ranged order—specifically, a nonzero average veloc-
ity vðr; tÞ ≠ 0 for d ¼ 3, and quasi-long-ranged order in
d ¼ 2, in both cases γv2 > 0 and γv2 < 0. Below, we will
present the detailed analysis of the full nonlinear model for
the simplest case, γv2 < 0 and d > 2, and for the case we
simulate, γv2 > 0 and d ¼ 2. We defer detailed discussion
of the other two cases to Ref. [24].
Breakdown of the linearized theory in d ≤ 5.—We now

show that the nonlinearities explicitly displayed in the
coarse-grained equations of motion radically change the
scaling of fluctuations in flocks with quenched disorder for
all spatial dimensions d ≤ 5. Furthermore, this change in
scaling stabilizes orientational order, i.e., makes it possible
for the flock to acquire a nonzero mean velocity (v̄ ≠ 0) in
three dimensions.
We begin by demonstrating this for d ≠ 2 and γv2 < 0

by power counting. (The same conclusion also holds for
γv2 > 0, but we defer the more complicated argument for
that case to Ref. [24].) Because of the anisotropy, we
rescale coordinates rk along the direction of flock motion
differently from those r⊥ orthogonal to that direction, and
also rescale time and the fields:

r⊥ → br⊥; rk → bζrk; t → bzt;

v⊥ → bχv⊥; δρ → bχρδρ: ð11Þ
These rescalings relate the parameters in the rescaled

equations (denoted by primes) to those of the unrescaled
equations. We will focus on the parameters Δ, γ, and DT ,
and the combination of parameters c20=ρ0, which control the
fluctuations in the dominant direction θq ¼ π=2 of wave
vector q. We easily find

γ0 ¼ bz−ζγ; Δ0 ¼ b2ðz−χÞþ1−d−ζΔ; ð12Þ�
c20
ρ0

�0
¼ bχρ−χþz−1

�
c20
ρ0

�
; D0

T ¼ bz−2DT: ð13Þ

We can thus keep the scale of the fluctuations fixed by
choosing the exponents z, ζ, χ, and χρ to obey

z − ζ ¼ 0; χρ − χ þ z − 1 ¼ 0; z − 2 ¼ 0;

2ðz − χÞ þ 1 − d − ζ ¼ 0: ð14Þ

Solving these yields

zlin ¼ ζlin ¼ 2; χlin ¼
3−d
2

; χρ;lin ¼
1−d
2

: ð15Þ

The subscript “lin” in these expressions denotes the fact
that we have determined these exponents ignoring the
effects of the nonlinearities in the equations of motion
Eqs. (2) and (3). We now use them to determine in what
spatial dimension d those nonlinearities become important.
Upon the rescalings (11), the non-linear terms λ, and

g1;2;3;4 in the v⊥ equation of motion (2) obey

λ0 ¼ bzþχ−1λ ¼ bð5−dÞ=2λ; ð16Þ

g01;2;3;4 ¼ bzþχρ−ζg1;2;3;4 ¼ bð1−dÞ=2g1;2;3;4: ð17Þ

By inspection of Eq. (17), we see that only λ becomes
relevant in any spatial dimension d > 1; in fact, it becomes
relevant for d ≤ dc ¼ 5. The gi’s are all irrelevant, and can
be dropped. Furthermore, if we restrict ourselves to con-
sideration of the transverse modes vT , which we can do by
projecting the spatial Fourier transform of Eq. (2)
perpendicular to q⊥, we see that there is no coupling
between vT and ρ at all, even at nonlinear order. Hence, ρ
completely drops out of the problem of determining the
fluctuations of vT . And since vT is, as we saw in our
treatment of the linearized version of this problem, the
dominant contribution to the velocity fluctuations when
d > 2 (so that vT actually exists) and γv2 < 0 (so that there
is no direction of q for which the longitudinal velocity
fluctuations vL diverge more strongly than 1=q2 in the
linearized approximation), this means that the long distance
scaling of the velocity fluctuations will be the same as in a
model with no density fluctuations at all, that is, an
incompressible model, in which ∇⊥ · v⊥ ¼ 0.
We now note two useful facts.
(1) The only nonlinearity (the λ term) can be written as a

total ⊥ derivative. This follows from the identity

ðv⊥ ·∇⊥Þv⊥i ¼ ∂⊥
j ðv⊥j v⊥i Þ − v⊥i ∇⊥ · v⊥: ð18Þ

The first term on the right-hand side of this expression is
obviously a total ⊥ derivative. The second term vanishes
since ∇⊥ · v⊥ ¼ 0, which implies that the nonlinearity can
only renormalize terms which involve ⊥ derivatives (i.e.,
D0

T); specifically, there are no graphical corrections to
either γ or Δ.
(2) There are no graphical corrections for λ either,

because the equations of motion Eqs. (2) and (3) have
an exact “pseudo-Galilean invariance” symmetry [25];
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i.e., they remain unchanged by a pseudo-Galilean trans-
formation,

r⊥ → r⊥ − λv1t; v⊥ → v⊥ þ v1; ð19Þ
for arbitrary constant vector v1⊥ek. Since such an exact
symmetry must continue to hold upon renormalization,
with the same value of λ, the parameter λ cannot be
graphically renormalized.
Taken together, these two facts imply that Eq. (12) and

the first equality of Eq. (16) are exact, even when graphical
corrections are included. Therefore, to get a fixed point, we
must have

z−ζ¼0; 2ðz−χÞþ1−d−ζ¼0; zþχ−1¼0; ð20Þ

which imply

z ¼ dþ 1

3
¼ ζ; χ ¼ 2 − d

3
: ð21Þ

The fact that χ < 0 for all d in the range 2 < d < 5
implies that velocity fluctuations get smaller as we go to
longer and longer length scales; this implies the existence
of long-ranged order (i.e., a nonzero average velocity
v̄ ≠ 0) in all of those spatial dimensions. The physically
realistic case in this range is, of course, d ¼ 3.
These exponents imply that Fourier transformed velocity

correlations take the form

jv⊥ðqÞj2 ¼
h½ðqk=ΛÞ=ðq⊥=ΛÞζ�

q2k
∝

(
q−2ζ⊥ ; ðq⊥Λ Þζ ≫

qk
Λ ;

q−2k ; ðq⊥Λ Þζ ≪
qk
Λ ;

ð22Þ
where hðxÞ is a universal scaling function (up to a non-
universal overall multiplicative constant), and Λ is an
ultraviolet cutoff.
Nonlinear effects for γv2 > 0, d ¼ 2.—Now “longi-

tudinal” fluctuations (i.e., δρ and vL) become important,
which causes the g and w nonlinearities in the equations of
motion Eqs. (2) and (3) to also become important. This
prevents us from making such a compelling argument for
exact exponents. However, our experience with the
annealed noise problem suggests a way forward. In that
annealed case, the assumption that below the critical
dimension only one of the nonlinearities, namely the
convective λ term, is relevant makes it possible to determine
exact exponents in d ¼ 2. These exponents agree extremely
well with simulations of flocking [3–7]. Thus this
assumption appears to be correct for the annealed problem,
which suggests that it might also be true in the quenched
disorder problem.
If it is, then the two points that we used to determine the

exact exponents for the γv2 < 0, d ≠ 2 case just considered
also hold here. In this case, the λ nonlinearity can be written
as a total derivative because v⊥ has only one component

in d ¼ 2, so ðv⊥ · ∇⊥Þv⊥i ¼ v⊥∂⊥v⊥ ¼ ∂⊥ðv2⊥=2Þ.
Pseudo-Galilean invariance also applies once λ is the only
relevant nonlinearity [25].
Hence, the arguments we made earlier for the exact

exponents for the case γv2 < 0, d ≠ 2 also apply for
γv2 > 0, d ¼ 2. This implies that the exponents of
Eq. (21) apply here as well, albeit with d ¼ 2, which
implies z ¼ ζ ¼ 1, χ ¼ 0. The vanishing of χ implies
quasi-long-ranged order [Eq. (1)], while the fact that
ζ ¼ 1 implies that fluctuations scale isotropically. Note
that this is in strong contradiction to the linear theory,
which predicts extremely anisotropic scaling of fluctua-
tions when γv2 > 0, as it is here.
The physical origin of this restoration of isotropic scaling

is that the damping coefficient ϵ2ðθqÞ is renormalized by
nonlinear fluctuation effects by an amount that scales like
q−2 as q → 0 and θq → θc, cancelling off the explicit q2

in Eq. (5), and thereby making the fluctuations scale
isotropically. Since this nonlinear effect is caused by
disorder-induced fluctuations, we expect the finite q → 0
limiting value of q2ϵ2ðθqÞ, which we define as δ
[i.e., δ≡ ðlim =q → 0Þq2ϵ2ðθcÞ], to get very small as the
strength Δ of the disorder does. Since our simulations are
done at weak disorder, we expect δ to be small, which

implies a sharp peak in a plot of q2jv⊥ðqÞj2 versus θq.
Specifically, our analysis implies

q2jv⊥ðqÞj2 ∝
Δcos2ðθÞ

½sin2ðθÞ − tan2ðθcÞcos2ðθÞ�2 þ δ
: ð23Þ

We have tested some of our analytical predictions by
numerical simulations of a modified Vicsek model where a
certain number of static particles (“dead birds”) are added
to the simulation. These stationary particles are placed
randomly in space with fixed “pseudovelocity vectors” of
length v0 in random directions. Normal moving particles
will align their velocities with these pseudovelocity vectors
in their neighborhood. Details of the model and all the
simulation results are described in Ref. [24]. Because of
space limitations, here we only highlight the velocity
correlation function obtained from our simulations.
As shown in Fig. 1, the angular dependence of the velocity
correlation function agrees well with our theoretical pre-
diction [Eq. (23)]. It should be noted that this result cannot
continue to hold down to arbitrarily small q because quasi-
long-ranged order, which our result χ ¼ 0 implies, is
inconsistent with macroscopic anisotropy. Therefore, at
large enough length scales that the velocity correlation
function in Eq. (1) becomes≪ (vðrÞ)2, Eq. (23) will break
down and isotropy will be restored. However, as in the case
of an equilibrium two-dimensional nematic [26], isotropy
is restored by slow (logarithmic) effects, which only
dominates at an exponentially large length scale that is
much larger than our simulation size.
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Summary.—We have studied a fully nonlinear hydro-
dynamic equation for flocking in the presence of quenched
disorder. We find that the critical dimension for the non-
linear terms to become relevant is dc ¼ 5. For d < 5
and γv2 < 0 we can determine all the scaling exponents
Eq. (21). These predicted exponents show that flocks with
nonzero quenched disorder can still develop long-ranged
order in three dimensions, and quasi-long-ranged order in
two dimensions, in strong contrast to the equilibrium case,
in which any amount of quenched disorder destroys
ordering in both two and three dimensions [18–20]. This
prediction is consistent with the simulation results of
Chepizhko et al. [22] and Das et al. [23] and our own
(see Ref. [24] for more comparisons).
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