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We confine a nematic liquid crystal with homeotropic anchoring to stable toroidal droplets and study how
geometry affects the equilibriumdirector configuration. In contrast to the case of cylindrical confinement, we
find that the equilibrium state is chiral—a twisted and escaped radial director configuration. Furthermore, we
find that the magnitude of the twist distortion increases as the ratio of the ring radius to the tube radius
decreases; we confirm this with computer simulations of optically polarized microscopy textures. In
addition, numerical calculations also indicate that the local geometry indeed affects the magnitude of the
twist distortion. We further confirm this curvature-induced twisting using bent cylindrical capillaries.
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A system with broken reflection symmetry cannot be
superimposed onto its reflection image using only trans-
lations and rotations; it has a handedness and thus is chiral
[1]. Chirality can appear in systems comprised of chiral
building blocks, as in some photonic metamaterials [2], or
quite remarkably, via spontaneous symmetry breaking in an
achiral system [3]. This latter scenario is often studied in
nematic liquid crystals (NLC), an ordered material where
the constituent particles are achiral [4–14], anisotropic, and
preferentially align parallel to each other. This common
direction is referred to as the director n. The well-known
Frank-Oseen free energy describes the cost of splay, twist,
bend, and saddle-splay distortions of n: F¼ð1=2ÞR dV×
fK11ð∇ ·nÞ2þK22ðn ·∇×nÞ2þK33½n×ð∇×nÞ�2−ðK22þ
K24Þ∇ · ½nð∇ ·nÞþn×ð∇×nÞ�g, where K11, K22, K33, and
K24 are the corresponding elastic constants. Under toroidal
confinement with a director that is everywhere tangential to
the surface, the achiral, axial state, shown in Fig. 1(a), is
unstable against the doubly twisted, chiral state, shown in
Fig. 1(b), depending on bothK22=K24 and the aspect ratio of
the torus, ξ ¼ R0=a, withR0 the central ring radius and a the
tube radius [see Fig. 2(a)] [10]. Furthermore, whenever
reflection symmetry is broken, the magnitude of the result-
ant twist distortion grows with decreasing ξ, due to, in large
measure, the saddle-splay contributions to F, which effec-
tively screen the energetic cost for twisting [10,15].
This doubly twisted state is also found for cylindrical

confinement when K24 > K22, despite the fact that simply
aligning n along the long axis of the cylinder would result
in a distortion-free state [12,13]. The key here is again
saddle splay. Importantly, for cylinders under homeotropic
confinement, corresponding to n being normal to the

boundaries of the cylinder, the saddle-splay contribution
to F takes a constant value and does not depend on what n
does in the bulk. Correspondingly, the LC adopts an achiral
configuration [16,17], unless K22 ≪ K11, K33 [11], which
is true for lyotropic chromonic liquid crystals (LCLC).
In this Letter, we consider toroidal NLC droplets with

homeotropic anchoring using a LC where all the elastic
constants are comparable, and show that despite the fact
that saddle splay plays no role in the equilibrium director
field, the confinement geometry still induces spontaneous
reflection symmetry breaking. Similar to prior results with
planar anchoring [10], where saddle splay is of the utmost
importance, we also find that the magnitude of the resulting
twist distortion increases with decreasing ξ, revealing that
such a geometric control of chirality is general and does
not depend on boundary conditions. For a given NLC, the
geometrically tuned chirality depends only on ξ, a ratio of
curvatures. We confirm this using bent cylindrical capil-
laries, where by keeping a constant and changing R0

smoothly, we generate a gradient in the magnitude of
the twist distortion. The ability to generate chiral twist
gradients is new and opens the door to additional chirality-
dependent fundamental studies.

FIG. 1. Director schematics of nematic tori with planar anchor-
ing for an (a) axial and a (b) doubly twisted director field.
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Wemake stable toroidal droplets with the NLC 4-Cyano-
4’-pentylbiphenyl (5CB, Heibei Chemical Co.) in an outer
yield-stress medium consisting of a jammed dispersion of
polyacrylamide hydrogels (Carbopol ETD 2020, Lubrizol)
[18,19]. The yield-stress medium has approximately 8 mM
sodium dodecyl sulfate (SDS, Sigma Aldrich), a concen-
tration that yields strong homeotropic anchoring [20].
We show bright-field and crossed-polar images of a

representative toroidal droplet with ξ ¼ 5 in Figs. 2(b) and
2(c), respectively. In the regions where φ̂ is aligned along
either the polarizer (P) or analyzer (A), the crossed-
polarized texture [Fig. 2(c)] has the characteristic dark-
light-dark-light-dark pattern associated with the classic
escaped radial (ER) configuration of homeotropic cylin-
drical nematics [16,17]. This configuration is illustrated
schematically in Fig. 3(a). We experimentally generate this
configuration by filling a 150 μm inner-diameter (ID)
cylindrical capillary (VitroCom) with 5CB. The capillary
is coated with lecithin (Granular, Acros) prior to filling to
induce homeotropic anchoring [18,21]. Example bright-
field and crossed-polarized images of the capillary are
shown in Figs. 3(b) and 3(c). Indeed, the same dark-light-
dark-light-dark pattern is found in the crossed-polar images
of both the toroidal droplet [Fig. 2(c)] and the cylindrical
capillary [Fig. 3(c)]. However, when we compare the gray-
scale intensity profiles [22] taken across the tube of both the
toroidal droplet and the cylindrical capillary [highlighted

regions, Figs. 2(c) and 3(c)], plotted in Figs. 2(d) and 3(d),
respectively, we see that there are quantitative differences.
Specifically, we note that while both intensity profiles have
two maxima surrounding a central minimum, the central
minimum in the intensity profile for the cylindrical capil-
lary [Fig. 3(d)] is much lower than the central minimum in
the profile for the toroidal droplet [Fig. 2(d)]. We quantify
this difference with an intensity ratio Imax=Imin, where Imax
is the average of the intensity values of the two maxima
and Imin is the intensity value of the central minimum;
for the cylindrical capillary with an ER configuration,
Imax=Imin ≈ 4while for the toroidal droplet Imax=Imin ≈ 1.6.
We also fill a 150 μm ID capillary with 31.5% weight/

weight sunset yellow (SSY) (90% purity, Sigma Aldrich), a
LCLC with K22 ≪ K11, K33 [11,18,24]. Before filling, the
capillary is coated with Parylene to enforce homeotropic
anchoring [18]. Prior experiments showed that this system
spontaneously breaks reflection symmetry and twists,
adopting a twisted escaped radial (TER) configuration,
illustrated schematically in Fig. 3(e) [11].
A bright-field and crossed-polarized image of this

experiment is shown in Figs. 3(f) and 3(g), respectively.
By considering the gray-scale intensity profile in the

FIG. 2. (a) Schematic detailing the fr; θ;φg toroidal coordinate
system, where r is measured from the central ring, while θ and φ
are the polar and azimuthal angles in the torus, respectively.
We characterize the slenderness, or aspect ratio of the torus with
ξ ¼ R0=a, the ratio of the central ring radius R0, and the tube
radius a. (b,c) Bright-field and associated crossed-polar micros-
copy images of an example nematic toroidal droplet with
homeotropic anchoring, where ξ ¼ 5. Scale bar is 250 μm.
(d) Gray-scale intensity profile for the region highlighted in
(c), where 1 corresponds to white and 0 to black.

FIG. 3. (a,e) Director schematics, (b,f) bright-field, and (c,g)
associated crossed-polar microscopy images of an (a–c) escaped
radial (ER) configuration and a (e–g) twisted escaped radial
(TER) configuration in a cylindrical capillary. The capillaries in
(b,c) and (f,g) are filled with 5CB and SSY, respectively, and the
scale bar is 100 μm. The nails in (e) represent the director coming
out of the page. (d,h) Gray-scale intensity profiles for the regions
highlighted in (c,g), respectively, where an intensity of 1
corresponds to white and 0 to black.
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highlighted region in Fig. 3(g) and plotted in Fig. 3(h), we
find Imax=Imin ≈ 1.3. Interestingly, the intensity ratio found
with the homeotropic toroid is close to this value. More
generally, using a variety of toroids with different ξ and a,
we see that Imax=Imin increases with ξ [open circles,
Fig. 4(a)], from the floor provided by the TER configu-
ration in a cylindrical capillary [open square, ξ ¼ ∞,
Fig. 4(a)] to the ceiling set by the ER configuration in
a cylindrical capillary [triangles and square, ξ ¼ ∞,
Fig. 4(a)]. From this, we hypothesize that although K22

is comparable to K11 and K33 for 5CB, our homeotropic
NLC toroids have a TER configuration, with a decreasing
twist with increasing ξ.
To test this hypothesis, we first consider the Frank-Oseen

free energy with a radially symmetric ansatz in the
toroidal coordinate system fr; θ;φg, with fr; θg the polar
coordinates in the circular cross section and φ the azimuthal
angle in the torus [see Fig. 2(a)]. We define the
angles α ¼ arctan ðn · θ̂=n · r̂Þ and β ¼ arccosn · φ̂ ¼
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn · θ̂Þ2 þ ðn · r̂Þ2

q
=n · φ̂, describing the director

orientation in the rθ plane and the director orientation
measured from the φ̂ axis, respectively. With this para-
metrization, we have n ¼ r̂ cos α sin β þ θ̂ sin α sin βþ
φ̂ cos β, with βðrÞ satisfying βð0Þ ¼ 0 and βðaÞ ¼ π=2.
Note that αðrÞ ¼ 0 corresponds to an achiral ER configu-
ration for a cylinder. However, for finite ξ, we find that
there is always a nonzero twist deformation energy, even
when requiring αðrÞ ¼ 0 [25,26].
Since K11 ≈ K33 for 5CB, we also consider K11 ¼

K33 ¼ K and seek αðrÞ and βðrÞ that are solutions to
the Euler-Lagrange equations for different values of ξ and
K22=K. For a cylinder, K22=K > 0.27 corresponds to the
ER configuration, while K22=K < 0.27 results in the chiral
TER configuration [11]. For a torus, we find that the value

of K22=K below which the α ¼ 0 configuration is unstable
increases quadratically with 1=ξ. This indicates that the
region where curvature destabilizes the achiral ER con-
figuration against the TER configuration broadens with
decreasing ξ [25]. These two findings support the idea that
not only does geometry induce twist, but that it can also be
used to control it.
To further test our hypothesis, and sincewe cannotmeasure

the twist directly using waveguiding measurements, as
the TER structure does not satisfy the required Mauguin
criterion [10,27], we use Jones calculus [27,28] to simulate
crossed-polarized textures for a toroidal TER configuration.
We use an ansatz formed by coupling a doubly twisted
director field in a torus with the ER director field in a cylinder
in the one-constant approximation. In the toroidal coordi-
nate system, this ansatz is n¼ r̂sinðΩÞþθ̂cosðΩÞ½ωρξ=
ðξ−ρcosθÞ�þφ̂cosðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−½ωρξ=ðξ−ρcosθÞ�2

p
, where

ρ ¼ r=a, Ω ¼ 2 arctanðρÞ, and ω governs the amount of
twist in the director field.We produce textures for a variety of
ξ and twist angles τ, where τ ¼ 2 arcsinω is the angle
between the doubly twisted portion of the director along
the line joining points in the circular cross section at (r ¼ a,
θ ¼ π=2) and (r ¼ a, θ ¼ 3π=2) [10]. Example textures in a
toruswith ξ ¼ 5 for twist angle τ ¼ 0° and τ ¼ 47° are shown
in Figs. 5(a) and 5(b), respectively. We measure the intensity
profile for each texture [see Fig. 5(c)] and correlate Imax=Imin
with τ. We find that Imax=Imin decreases monotonically with
increasing τ [see Fig. 5(d)], indicating that Imax=Imin is a
proxy for twist and validating our earlier hypothesis that twist
decreases with increasing ξ.
Our data then suggest that the twist is induced by

the geometry of the torus. To further confirm this, we
consider 5CB under homeotropic anchoring in bent glass
capillaries, as seen in the bright-field image of an example
capillary in Fig. 4(b). As with the toroids, we consider a

FIG. 4. (a) Intensity ratio Imax=Imin as a function of the aspect ratio for the homeotropic nematic structures in this work: toroidal
droplets filled with 5CB (open circles), a straight cylindrical capillary filled with SSY in the transient ER configuration (filled square)
and stable TER configuration (open square), and bent and straight cylindrical capillaries filled with 5CB (triangles). An infinite aspect
ratio corresponds to a straight cylindrical capillary. (b) Bright-field microscopy image of a bent cylindrical capillary filled with 5CB
under homeotropic anchoring. The scale bar is 200 μm. (c,d) Crossed-polar microscopy images of the highlighted regions in (b), with
the polarizer and analyzer orientations indicated schematically in the bottom left of each image. (e,f) Gray-scale intensity profiles across
the capillary for the highlighted regions in (c,d), respectively. (g,h) Cross-section director schematic of an ER and a TER configuration,
respectively, in a toroidal droplet.
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crossed-polarized image and measure the intensity profile
across the capillary in regions where the capillary axis is
parallel to either P or A. By rotating P and A, we can
interrogate different regions in the same capillary; we
demonstrate this for the two example highlighted regions
in Fig. 4(b). A crossed-polarized image for both regions is
shown in Figs. 4(c) and 4(d), where P and A have been
rotated in each image to align with a portion of the capillary
axis. The intensity profiles taken across the highlighted
portion of Figs. 4(c) and 4(d) are plotted in Figs. 4(e)
and 4(f) and have Imax=Imin ≈ 1.8 and Imax=Imin ≈ 3.0,
respectively.
For the example crossed-polarized images in Figs. 4(c)

and 4(d), we calculate the associated local aspect ratio,
ξlocal ¼ Rcap=acap, with Rcap the radius of curvature of the
bent capillary axis at the highlighted region of interest and
acap the radius of the capillary [18,29,30]. We find ξlocal ¼
6.8 and ξlocal ¼ 9.1, respectively. We plot the measure-
ments of Imax=Imin as a function of ξlocal for multiple bent
capillaries, and see that the data from the capillaries fall
on top of the data from our toroidal droplets [triangles,
Fig. 4(a)]. This clearly indicates that the amount of twist is
determined solely by the local geometry. From this per-
spective, ξ can be seen as a dimensionless parameter locally
comparing the relevant curvatures; a gives the radius of
curvature in the bend distortion inherent to an ER con-
figuration, while R0 is the radius of curvature of the
additional distortions induced by bending the capillary.
Bending the capillary breaks the cylindrical symmetry of
both the bend and splay distortions in the ER configuration,
introducing a dependence on θ. This can be easily seen by
realizing that bending the capillary causes the splay and
bend distortions to increase near θ ¼ 0 and decrease near
θ ¼ π. The aspect ratio in a sense details the magnitude of
the asymmetry in these distortions: as ξ decreases, the
asymmetry between the distortions near θ ¼ 0 and those
near θ ¼ π grows, resulting in the twist distortion becoming

more energetically favorable. For the 5CB used in this
work, withK11 ≈ K22 ≈ K33, this asymmetry causes the ER
configuration to become unstable with respect to the TER
configuration [Figs. 4(g) and 4(h)].
In combination with prior results showing that ξ dictates

the amount of twist in NLC confined to toroids with planar
anchoring, our results in toroids with homeotropic anchoring
show that the ability of the confinement geometry
to affect the amount of twist is general and does not depend
on the specific anchoring. In both scenarios, the key is
ξ ¼ κtube=κring ¼ Ro=a, a ratio of curvatures. Since ξ char-
acterizes the local geometry, a gradient in ξ induces a gradient
in the amount of twist in a TER configuration. Apart from
studies of spontaneous reflection symmetry breaking, chiral
nematics are key ingredients in experimental studies of knot
theory [31–33], of topological solitons in ordered fields
[34,35], and for controlled self-assemblyof colloids dispersed
inNLC [36,37]. Our approach generates a chiral state inNLC
without either imposing a predefined pitch through adding a
chiral dopant to the NLC [38], or patterning a specified
amount of twist through the boundary conditions, as in a
twisted nematic cell [27]. Furthermore, we emphasize that the
ability to generate a chiral twist gradient, defined as a
continuous change in space in the magnitude of the twist,
is new and could be exploited in fundamental work address-
ing twisted states. In addition, our theoretical approach to the
problem uses a reasonable ansatz and is just the beginning of
other more general approaches that would allow quantita-
tively determining the role of geometry in the twisted state of
homeotropic tori and in other less symmetric objects.
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