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Inspired by recent feats in exchange coupling antiferromagnets to an adjacent material, we demonstrate
the possibility of employing them for inducing spin splitting in a superconductor, thereby avoiding the
detrimental, parasitic effects of ferromagnets employed to this end. We derive the Gor’kov equation for the
matrix Green’s function in the superconducting layer, considering a microscopic model for its disordered
interface with a two-sublattice magnetic insulator. We find that an antiferromagnetic insulator with
effectively uncompensated interface induces a large, disorder-resistant spin splitting in the adjacent
superconductor. In addition, we find contributions to the self-energy stemming from the interfacial
disorder. Within our model, these mimic impurity and spin-flip scattering, while another breaks the
symmetries in particle-hole and spin spaces. The latter contribution, however, drops out in the
quasiclassical approximation and thus, does not significantly affect the superconducting state.
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Introduction.—Conventional Bardeen-Cooper-Schrieffer
(BCS) superconductors [1] are incompatible with magnetic
interactions as the latter tend to break the Cooper pairing
[2] between the opposite-spin electrons. Nevertheless,
the so-called Pauli contribution, associated with energy
splitting of the two spin states, leads to interesting new
phenomena when the spin-splitting is comparable to the
“unperturbed” superconducting gap [3]. These include
spatially inhomogeneous order parameter in an otherwise
homogeneous superconductor [4,5], gapless superconduc-
tivity [6,7], and a first-order phase transition between
superconducting and normal states [8,9], all of which
have been experimentally observed [10,11]. Furthermore,
hybrids incorporating such spin-split superconductors
were recently predicted [12–14], and found [15,16], to
exhibit large thermoelectric effects. The spin splitting in
the superconducting layer may be induced by a magnetic
field or via exchange coupling to a magnetic layer [16,17]
and leads to intriguing transport properties reviewed
in Ref. [18].
The success of “exchange biasing” a ferromagnet (FM)

layer via its coupling to an adjacent antiferromagnet (AFM)
has been instrumental in the contemporary memory tech-
nology [19–21]. A simplified picture of exchange biasing
in FM-AFM bilayers requires the AFM interface to be
uncompensated, i.e., possess finite surface magnetization
[19,21,22]. Several theoretical models [22], most of which
assume the AFM surface to be uncompensated, have been
employed to understand the experiments. Recent progress
in surface characterization methods [23] and epitaxial
sample growth [24] has enabled to resolve [24,25] several
previously open questions [19]. Numerous experiments

[26–34] have succeeded in direct observation and quanti-
fication of uncompensated spins at interfaces thereby
improving the understanding of their role in exchange bias
and the control of the effect.
Recently, the presence of surface magnetization, stem-

ming from broken translational symmetry at interfaces,
in magnetoelectric AFMs has been predicted [35]. This has
also been observed experimentally and exploited in achiev-
ing electrically switchable exchange bias [36] and magnetic
memory [37] using α-Cr2O3. Furthermore, uncompensated
AFM interfaces have been theoretically predicted to
amplify transfer of magnonic spin from a magnetic insu-
lator to an adjacent non-magnetic conductor [38,39].
In this Letter, we suggest employing insulating AFMs,

with their uncompensated surfaces, to induce an effective
exchange field in an adjacent superconducting layer. To
the best of our knowledge, only FMs have been employed
to this end so far. AFMs offer several advantages over
FMs in this regard [40–42]. These include minimization
of stray magnetic fields, the possibility of electrical
tunability [36,37,43], avoiding parasitic negative effects
of low-energy magnon excitations [44,45] and so on. The
proximity effect due to metallic antiferromagnets has
been investigated experimentally [46] and theoretically
[47]. Antiferromagnetically ordered impurity chains may
also give rise to the Majorana state [48].
Considering a two-sublattice magnetic insulator (MI)-

superconductor (S) bilayer structure, we derive the Gor’kov
equation for the matrix Green’s function in S from a
microscopic Hamiltonian including the interface [49].
Our model for MI encompasses the full range of single-
domain magnets from ferro- to antiferro- via ferrimagnets
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[38,45]. We explicitly include interfacial disorder in our
model and find that the induced exchange field is resistant
to it, within the Born approximation. We find that the effect
of the MI layer is captured by a self-energy which includes
interfacial disorder-mediated terms, in addition to the
spin-splitting term. The latter is found to be large for an
uncompensated interface with an AFM. For the system
considered here, with the Hamiltonian diagonal in spin
space [50], the interfacial disorder-mediated terms take a
form identical to spin-independent impurity and spin-flip
scattering. A third disorder contribution breaks the particle-
hole and spin symmetries, but predominantly renormalizes
the normal state properties leaving the superconducting
state essentially unaffected.
Model and Hamiltonian.—We consider a MI-S bilayer

(Fig. 1) with the S thickness dS much smaller than the
superconducting coherence length. MI is comprised by a
single-domain two-sublattice magnetic insulator where
sublattice magnetizations are considered static and collin-
ear to the z axis. We consider S to be a BCS superconductor
in the weak coupling regime such that the Hamiltonian in
the grand canonical ensemble reads [49]:

H̃ ¼
Z

d3r

�X
α

ψ̃†
αðrÞ½−∂2 þ VsðrÞðδα↑ − δα↓Þ�ψ̃αðrÞ

þ
X
α;β

g
2
ψ̃†
βðrÞψ̃†

αðrÞψ̃αðrÞψ̃ βðrÞ
�
: ð1Þ

Here, ψ̃αðrÞ is the electron annihilation operator for
z-projected spin α at position r, ∂2≡∇2=2mþμ−ViðrÞ,
μ is the chemical potential, m is electron effective mass,
ViðrÞ½VsðrÞ� represents the spin-independent (dependent)
potential energy, gð< 0Þ parametrizes the electron-electron
attraction, and we have set ℏ to 1. All operators are in
the Heisenberg picture and are decorated by a ˜ above.

The interface with MI results in the potential energy terms
Vi;sðrÞ. For simplicity, we do not explicitly include bulk
contributions to the potential energy here.
The MI-conductor interface is typically modeled as an

effective exchange interaction between the spin densities
on the two sides [38]:

H̃int ¼ −
Z

d2s
X
G¼A;B

½JGS̃GðsÞ · S̃ðsÞ�: ð2Þ

Here, s is the two-dimensional position vector in the
interfacial plane defined by y ¼ 0, S̃ is the electronic
spin density operator in S, and S̃AðBÞ is MI sublattice
AðBÞ spin density operator. JAðBÞ parametrizes the
exchange strength between the MI sublattice AðBÞ and
the S electrons, and depends upon the details of the
interface such as its microstructure (Fig. 1). The magnetic
spin densities are related to the corresponding magnetiza-
tions via the sublattice gyromagnetic ratios γA;B, assumed
negative, M̃A;B ¼ −jγA;BjS̃A;B. We consider sublattice AðBÞ
to be saturated along positive (negative) z direction with
saturation magnetization MA0ðB0Þ.
Augmenting the interfacial interaction above [Eq. (2)]

with a spin-independent contribution and disorder, the net
interfacial Hamiltonian may be expressed as

H̃int ¼
Z

d3r
X
α

ψ̃†
αðrÞUðsÞδðyÞ½aþ bðδα↑ − δα↓Þ�ψ̃αðrÞ;

ð3Þ

where a parametrizes the spin-independent contribution
of the interfacial interaction and b ¼ JAMA0=2jγAj−
JBMB0=2jγBj. UðsÞ accounts for the interfacial disorder
which is modeled in a manner analogous to the treatment of
impurities-mediated disorder in a bulk conductor [49,53]:

UðsÞ ¼ 1þ
X
si

uðs − siÞ; ð4Þ

with uðs − siÞ representing the fluctuation in potential
energy associated with a “disorder center” located at si,
and we assume

R
d2suðsÞ ¼ 0. Employing Eq. (3), the

potential energy contribution to the total Hamiltonian
[Eq. (1)] corresponds to Vi½s�ðrÞ ¼ UðsÞδðyÞa½b�.
Gor’kov equation.—We now formulate the problem at

hand in terms of imaginary-time Green’s functions in
Nambu-spin space. Decorating four-dimensional entities
(vectors and matrices) by a ˇ and two-dimensional by a ^

above, we define Ψ̌† ≡ ½ψ̃†
↑; ψ̃

†
↓; ψ̃↓; ψ̃↑�. We further define

the matrix, imaginary-time Green’s function as [49]

(a) (b) (c)

FIG. 1. Possible interface microstructures for MI-S bilayers.
Sublattices A and B are depicted in blue and red, respectively.
Cases (a) and (b), respectively, represent antiferromagnets with
compensated and fully uncompensated interfaces with S. Case
(c) depicts a ferrimagnet with a compensated interface. In this
case, the symmetry of interfacial coupling between S and the two
sublattices is broken [51,52] by, for example, different wave
function clouds associated with the localized moments that
comprise the sublattice. Interfacial disorder, accounted for in
our model, is not depicted explicitly here.
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Ǧðx1; x2Þ≡ −τ̂z ⊗ σ̂0hTτΨ̌ðx1ÞΨ̌†ðx2Þi;

¼

2
666664

G↑↑ G↑↓ F↑↓ F↑↑

G↓↑ G↓↓ F↓↓ F↓↑

−F̄↓↑ −F̄↓↓ Ḡ↓↓ Ḡ↓↑

−F̄↑↑ −F̄↑↓ Ḡ↑↓ Ḡ↑↑

3
777775
; ð5Þ

where τ ¼ it is the imaginary time, x1 ≡ ðr1; τ1Þ, τ̂0;x;y;z and
σ̂0;x;y;z are the identity and Pauli matrices in, respectively,
the Nambu and spin spaces, and the outer product is
expanded as

τ̂z ⊗ σ̂0 ¼
�
σ̂0 0

0 −σ̂0

�
:

Employing the Heisenberg equation of motion for
ψ̃αðx1Þ with the Hamiltonian given by Eq. (1), we obtain
the dynamical equation for Gαβðx1; x2Þ:

∂Gαβðx1; x2Þ
∂τ1 ¼ −δαβδðx1 − x2Þ þ ½∂2

1 − Vsðr1Þðδα↑ − δα↓Þ�

×Gαβðx1; x2Þ − i
X
γ

Δαγðx1ÞF̄γβðx1; x2Þ;

ð6Þ

whereΔαβðxÞ≡ ijgjFαβðx; xÞ. In simplifying the four-point
correlator above, we have employed Wick’s theorem [54]
and disregarded terms that lead to a mere renormalization
of the chemical potential [49]. Dynamical equations for the
other components of the matrix Green’s function can be
derived in an analogous manner [49]. All these equations
may be expressed as a single Gor’kov equation for the
matrix Green’s function:

Ǧ−1ðx1ÞǦðx1; x2Þ ¼ δðx1 − x2Þτ̂0 ⊗ σ̂0; ð7Þ

where

Ǧ−1ðx1Þ ¼ −
∂
∂τ1 τ̂z ⊗ σ̂0 þ ∂2

1τ̂0 ⊗ σ̂0

− Vsðr1Þτ̂z ⊗ σ̂z − Δ̌ðr1Þ: ð8Þ
For a homogeneous superconducting state, the pair poten-
tial matrix may be chosen as Δ̌ðrÞ ¼ −iΔτ̂y ⊗ σ̂z with
real Δ [49,55].
Interfacial self energy.—Since the Gor’kov equation can

rarely be solved exactly, we resort to perturbation theory
within the Green’s function method [53] and obtain the
self-energy arising from the interfacial contribution to the
Hamiltonian [Eq. (3)]. To this end, we express Ǧ−1ðx1Þ ¼
Ǧ−1
0 ðx1Þ − Ȟintðx1Þ as the sum of the clean superconducting

layer plus the interfacial contribution, which assumes the
form [using Eqs. (3) and (8)]:

Ȟintðx1Þ ¼ Uðs1Þδðy1Þ½aτ̂0 ⊗ σ̂0 þ bτ̂z ⊗ σ̂z�
≡Uðs1Þδðy1Þť: ð9Þ

The evaluation of the corresponding self-energy follows
the method analogous to the case of impurities-mediated
disorder in a bulk conductor [49,53] and is detailed in the
Supplemental Material [56]. Within this method, the so-
called cross-diagram technique [49,53], the following
assumptions are made. (i) The perturbation is assumed
small thus making the Born approximation. (ii) We average
over the positions si of the disorder centers. (iii) All
diagrams with intersecting impurity scattering lines may
be disregarded. (iv) We further neglect diagrams with more
than two scattering events. In addition, we employ the
quasiclassical approximation in treating the homogeneous
superconducting state. With these assumptions, diagrams
of all orders can be summed [49,53] and we obtain the main
result of this Letter:

Σ̌intðωn;pÞ¼
1

dS

�
ťþNdis

Z
d3p1

ð2πÞ3 juðκ−κ1Þj2ť Ǧðωn;p1Þť
�
;

ð10Þ

where the result is expressed concisely in the frequency
ωn and momentum p representation [56]. Here, uðκÞ≡R
d2suðsÞ expð−iκ · sÞ, Ndis is the areal density of disorder

centers, κ is the in-plane component of the momentum p,
and dS is the thickness of the S layer assumed to be much
smaller than the superconducting coherence length. The
Green’s function for the proximity-coupled superconduct-
ing layer is given by Ǧ−1ðωn;pÞ¼ Ǧ−1

0 ðωn;pÞ− Σ̌intðωn;pÞ,
in terms of the unperturbed Green’s function Ǧ0ðωn; pÞ and
the self-energy evaluated above.
Discussion.—The self-energy [Eq. (10)], stemming from

the interface with MI, comprises a contribution indepen-
dent of, and thus resistant to, interfacial disorder and a
term proportional to the areal density of disorder centers
Ndis. Apart from a small renormalization of the chemical
potential, the former contribution is simply the effec-
tive exchange field, ∝ b ¼ JAMA0=2jγAj − JBMB0=2jγBj,
induced in S. Thus, an AFM with uncompensated surface,
for which JA ≠ JB,MA0 ¼ MB0, and γA ¼ γB, induces spin
splitting in the adjacent S layer.
The interfacial disorder-mediated contribution to the

self energy can be further divided into three terms with
the integrands in Eq. (10), respectively, proportional to
(i) a2ðτ̂0 ⊗ σ̂0Ǧτ̂0 ⊗ σ̂0Þ, (ii) b2ðτ̂z ⊗ σ̂zǦτ̂z ⊗ σ̂zÞ, and
(iii) abðτ̂0 ⊗ σ̂0Ǧτ̂z ⊗ σ̂z þ τ̂z ⊗ σ̂zǦτ̂0 ⊗ σ̂0Þ. The term
(i) looks like the self-energy due to nonmagnetic impurities
[49]. Assuming isotropic scattering, this contribution drops
out of the superconducting gap as well as the Eilenberger
equations for s-wave superconductors, consistent with the
Anderson theorem [57]. Assuming that Ǧ−1ðx1Þ is diagonal
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in spin space, which is the case here [Eq. (8)], the total
matrix Green’s function is also diagonal in spin space.
Taking this into consideration, term (ii) may be rewritten as
∝ τ̂z ⊗ σ̂0Ǧτ̂z ⊗ σ̂0, which has the same form as the self-
energy contribution due to spin-flip scattering via magnetic
impurities [49]. The effect of such a term has been studied
and is known to result in phenomena such as gapless
superconductivity [7]. It also has consequences for the
density of states [58–60] and leads to an enhancement of
the Seebeck effect in magnet or superconductor hetero-
structures [61].
Again, accounting for the diagonal in spin space struc-

ture of the total Green’s function, the contribution to
the self-energy corresponding to the term (iii) assumes
the matrix structure ∝ τ̂0 ⊗ σ̂z, thereby breaking the
symmetries in both Nambu and spin spaces. An explicit
evaluation of the quasiclassical Green’s function matrix
shows that this term drops out on integrating over the
excitation energy. Thus, this term renormalizes the normal-
state properties of the S layer while dropping out in the
quasiclassical description of the superconducting state.
The analogous term in the self-energy evaluated beyond
the Born approximation for magnetic impurities in a bulk
superconductor, which does not lead to any spin splitting,
was found to break the particle-hole symmetry [62]. Its
key manifestation was asymmetric scattering with the
Yu-Shiba-Rusinov states [63–65] resulting in a large
thermoelectric effect [62].
In general, the Hamiltonian, and thus the total matrix

Green’s function, may be nondiagonal in spin space when,
for example, the magnetization is spatially inhomogeneous
or the superconductor exhibits unconventional same-spin
electron pairing. Under those circumstances, terms (ii) and
(iii) may not be interpreted as discussed above.
Here, we have considered a superconducting layer much

thinner than the coherence length. For a thick super-
conductor, the evaluated self-energy may be incorporated
in the boundary conditions for the Gor’kov equation in
the bulk. Thus, our theory also provides a microscopic
derivation of the boundary conditions describing the inter-
face of a superconductor with a magnetic insulator,
complementary to the corresponding evaluations within a
scattering theory approach [66–68]. Furthermore, we have
considered a single-domain magnet leaving possible gen-
eralizations to textured and multidomain interfaces for
future work [69]. Reference [25] reviews exchange bias
and the magnetic proximity effect together thereby delin-
eating the connection between the two phenomena further
and providing directions for generalizing our results.
From the experimental point of view, it is considered

difficult to grow metals on insulators due to lattice mis-
match. Such interfaces are inevitably disordered. Never-
theless, a strong interfacial exchange coupling has been
observed in a wide range of such structures [51,52,70–75].
This is consistent with our result demonstrating that

interfacial disorder does not lead to any qualitative changes
in physics and the induced exchange field is resistant to this
disorder. It, however, leads to additional spin-flip scatter-
inglike contributions which, in some cases [61,62,76,77],
may be desirable.
As elaborated in the Supplemental Material [56], the

existing literature on exchange bias [19] and spin-mixing
conductance [70,75,78,79] provides valuable guidance
regarding materials and corresponding expected spin
splittings. Several AFMs, such as CoO, FeF2, and FeS,
may induce fields greater than 100 mT in a 10 nm thick
superconducting layer [19,56]. Furthermore, multilayers
incorporating one or more ferromagnetic seed layers are
expected to be particularly effective [19,56], while still
circumventing the disadvantages of spin splitting induced
via a ferromagnetic layer.
Summary.—We have derived and solved the Gor’kov

equation for two-sublattice magnetic insulator-thin super-
conductor bilayer structures. Starting with a microscopic
description of the interface, we have evaluated the inter-
facial self-energy for the matrix (Nambu-spin space)
Green’s function in the superconducting layer. Our findings
show that an antiferromagnet with an uncompensated
surface, in addition to ferrimagnets, induces interfacial
disorder-resistant spin splitting in the adjacent supercon-
ductor. Additional contributions mimicking nonmagnetic
impurities and spin-flip scattering result due to the inter-
facial disorder. Our findings, in conjunction with related
experiments [19,36,37,75], pave the way for employing
antiferromagnetic insulators in inducing exchange field in
an adjacent superconductor, thereby addressing the fea-
sibility of a wide range of concepts and devices involving
spin-split superconductors.
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