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The curvature dependence of the surface tension is central to the nucleation of liquids, but remains
difficult to access experimentally and predict theoretically. This curvature dependence arises from the
curvature-dependent molecular structure, which, for small nuclei, can deviate significantly from that of the
planar liquid interface. Simulations and density functional theory have been used to predict this curvature
dependence, however with contradicting results. Here, we provide the first direct measurement of the
curvature-dependent surface tension in nucleating colloidal liquids. We employ critical Casimir forces to
finely adjust colloidal particle interactions and induce liquid nucleation, and image individual nuclei at the
particle scale to measure their curvature-dependent surface tension directly from thermally excited surface
distortions. Using continuum models, we elucidate the interplay between nucleus structure, particle pair
potential, and surface tension. Our results reveal a 20% lower surface tension for nuclei of critical size
compared to bulk liquids, leading to 3 orders of magnitude higher nucleation rates, thus highlighting the
importance of surface tension curvature corrections for accurate prediction of nucleation rates.
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The nucleation of a liquid from its saturated vapor phase
provides an archetypical example of nucleation [1,2],
governed by the surface tension that sets an energetic
barrier for creating the surface surrounding the liquid
phase. This surface tension is believed to vary significantly
for small nuclei: as the surface becomes curved at the
molecular scale, the molecular structure becomes signifi-
cantly distorted, and this causes the surface tension to
deviate from its value of the planar interface [3].
Simulations [4–7] and density functional theory [8–11]
have been used to determine the interface tension of these
small nuclei, but with controversial results on curvature
corrections for the surface tension, thus compromising
accurate predictions of nucleation rates.
The nucleation barrier reflects the competition between

the energy cost ΔGsurf , for creating the surface between
liquid and vapor, and the energy gain ΔGbulk from the
condensation of particles into the thermodynamically stable
liquid phase. The nucleation energy reaches a maximum
ΔGc at the critical nucleus radius Rc; nuclei are only stable
and grow if their radius becomes greater than Rc. The
nucleation energy barrier ΔGc thus depends on the surface
tension γ and chemical potential difference Δμ. Since γ
varies with surface curvature, this alters the nucleation
barrier and predicted nucleation rate. However, from
simulations and theory no consensus exists about this
curvature dependence. Even the sign of change of the
surface tension with respect to the flat interface is not
agreed on [12]. Experimental measurements based on
macroscopic expansion or diffusion can only determine

average nucleation rates, leaving the actual curvature-
dependent surface tension of individual nuclei inaccessible.
Colloidal particles interacting via critical Casimir forces

provide good models for studying liquid nucleation directly
at the particle scale [13]. The particles interact via effective
attractive pair potentials [14] similar to those of molecules,
exhibiting gas-liquid transitions in close analogy to their
molecular counterpart [13]. The attractive critical Casimir
force arises from the confinement of solvent fluctuations
between the particle surfaces in a near-critical solvent
[15–18], and owing to its universal temperature depend-
ence allows unique control of the particle interactions. This
enables us to drive the colloidal system reversibly through
the gas-liquid transition and to investigate the nucleation
process directly as a function of the important parameters γ
and Δμ, that together set the energy barrier of nucleation.
Using this colloidal system, we provide the first meas-

urement of the curvature dependence of the surface tension.
We image individual liquid nuclei directly at the particle
scale, and measure their curvature-dependent surface ten-
sion from analyzing thermally induced surface distortions.
We find that the surface tension decreases significantly with
decreasing nucleus size; for critical nuclei, it drops by about
20% with respect to that of the flat interface, resulting in
nucleation rates 3 orders of magnitude larger than predicted
by classical nucleation theory. We elucidate the curvature-
dependent nucleus structure and test continuum models
of surface tensions at small scale. We show that a simple
mean-field model allows reasonable prediction of the
surface tension based on the particle-scale structure and
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pair potential. Our results highlight the importance of
curvature corrections for accurate nucleation rate predic-
tions in the nanoscale nucleation of liquids.
To study colloidal liquid nucleation, we suspend poly-

n-isopropyl acrylamide (PNIPAM) particles in a binary
solvent mixture of 3-methyl pyridine (3MP) and heavy
water [19] with weight fractions of 0.28 and 0.72, respec-
tively, that matches both the refractive index and density of
the particles. The refractive index match allows observation
of nucleation deep in the bulk of the suspension, while the
buoyancy match prevents sedimentation. The particles
exhibit attractive critical Casimir interactions below the
phase-separation temperature Tc ¼ 39.5 °C of the binary
solvent. We vary the critical Casimir forces by offsetting
the temperature by a small value ΔT (between 0.5 °C and
0.2 °C) below Tc, corresponding to particle interaction
energies between 0.2kBT and 1.5kBT. At these temper-
atures, the particles have a constant radius of r0 ¼ d=2 ¼
250 nm. At ΔT ¼ 0.4 °C and above, they exhibit suffi-
ciently strong attraction for condensation into a liquid
phase to occur.
We elucidate the nucleation and growth of the liquid on

an intermediate length scale using dynamic light scattering
that measures the size of nuclei from their diffusion in
the solvent. The correlation time of fluctuations of the
scattered intensity is related to the diffusion coefficient via
D ¼ 1=ðq2τÞ, which is related to the nucleus radius R via
the Stokes-Einstein relation D ¼ kBT=ð6πηRÞ [20]. Here,
q is the scattering vector and η ¼ 1.2 mPa s the viscosity of
the binary solvent [21]. The resulting mean nucleus radius
hRi as a function of time reveals two stages of growth, as
shown in Fig. 1. The first, hRi ∝ t1=2, indicates the growth
is limited by the surface, characteristic for nucleation. The

second, hRi ∝ t1=3, indicates the growth is limited by
diffusion. This time dependence is similar to the surface-
and diffusion-limited growth [22,23] of molecular liquids
known as Ostwald ripening [24], highlighting the analogy
of the nucleation of colloidal and molecular liquids.
We follow the nucleation process at the particle scale

using confocal microscopy to image individual particles in
a 66 μm by 66 μm by 30 μm volume, and to determine
particle positions with an accuracy of ∼0.03 μm in the
horizontal and 0.05 μm in the vertical direction; the latter is
determined from repeated imaging of aggregated particle
layers on a cover slip in which thermal motion is sup-
pressed. The direct imaging allows us to visualize the
formation and growth of individual nuclei and follow the
nucleation process at the particle scale (see movies in
Supplemental Material [25]). Initially, small nuclei dis-
appear [Fig. 2(a)], while larger nuclei observed at a later
stage are stable and grow [Figs. 2(b) and 2(c)]. Three-
dimensional reconstructions show the full structure of
typical unstable and stable nuclei in Figs. 2(e)–2(g). The
corresponding time-averaged density profiles are plotted in
Fig. 2(h). They allow direct measurement of the critical
radius Rc of nucleation. The radius of the unstable nucleus
is R ≃ 4r0, while that of the stable nucleus is R ≃ 6r0. Thus,
Rc ≃ 5r0, which is in good agreement with the crossover
observed in dynamic light scattering and simulations of
Lennard-Jones liquids yielding critical radii between 4r0
and 5r0 [4,5] at reduced temperatures corresponding to our
colloidal interaction [13].
We also measure the Gibbs free-energy barrier directly

from the distribution of nuclei sizes. In thermal equilib-
rium, the probability PN for a particle to be in a nucleus of
N particles is PN ∝ expð−ΔGN=kBTÞ [4], where ΔGN is
the Gibbs free energy of the nucleus. Using full three-
dimensional reconstructions [Fig. 3(a)], we measure the
probability PN and plot the resultant Gibbs free energy as a
function of cluster size in Fig. 3(b). It reaches a maximum
of ΔGc ≃ 10kBT at the critical radius Rc ≃ 5r0, in excellent
agreement with the direct observation of stable and
unstable nuclei. Classical nucleation theory predicts that
the Gibbs free energy ΔGðRÞ ¼ 4πR2γ − ð4π=3ÞR3ρΔμ,
where γ is the surface tension andΔμ the chemical potential
difference with saturation. Using ρ ¼ 3.3 μm−3 determined
from Fig. 2(h), we obtain a good fit of the data for
γ ¼ 0.33kBT=d2 and Δμ ¼ 0.52kBT [black solid line in
Fig. 3(b)], which are also in good agreement with simu-
lations of Lennard-Jones liquids yielding γ ≃ 0.5kBT=d2

and Δμ ≃ 0.3kBT at a similar reduced temperature [4,5].
We also explore the effect of varying supersaturation:
Performing the experiment at slightly larger ΔT corre-
sponding to weaker particle attraction, we observe that the
nucleation barrier increases and the critical radius grows
[red data in Fig. 3(b)]. Fitting with classical nucleation
theory gives γ ¼ 0.16kBT=d2 and Δμ ¼ 0.25kBT, both
smaller by a factor of ∼2, reflecting the lower degree of

FIG. 1. Light scattering measurement of colloidal liquid nu-
cleation and growth. Mean cluster size as a function of time,
determined from the time decay of correlations of the scattered
intensity, see inset. The scattered intensity is recorded at a 90°
angle with the incident beam after waiting times of Δt ¼ 5, 10,
30, 100, 180, and 360 min; its autocorrelation CðτÞ (inset) shows
double-exponential decays due to solvent fluctuations (at
τ ∼ 10−2 ms) and colloidal particle clusters (at τ ∼ 10 ms) grow-
ing in time, shifting the decay to larger τ.
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supersaturation due to weaker particle bonds, again in good
agreement with simulations [4,5].
We can now address the curvature dependence of γ

directly. To do so, we focus on individual nuclei and
measure their surface tension from analyzing thermally
excited surface distortions. Most nuclei are ellipsoidal,
exhibiting an excess area ΔA over the minimum spherical
surface area. This excess area is associated with an energy
cost w ¼ γΔA that, in thermal equilibrium, occurs with
probability PðΔAÞ ∝ expð−γΔA=kBTÞ, allowing us to
determine γ from the distribution of excess areas PðΔAÞ.
We use full three-dimensional reconstructions [Fig. 3(a)] to
determine, for each nucleus, the best ellipsoidal fit to its
surface, and the excess area ΔA over the spherical shape.
The distributions for different sizes of nuclei indeed exhibit
a, systematically varying, exponential decay [Fig. 4(a)]; the
observed exponential decay of the probability distribution
PðΔAÞ with systematically varying slope lends additional
credence to this method of determining the surface tension.
The resulting values of the surface tension γ obtained

from the slope in Fig. 4(a) turn out to increase monoton-
ically with the size of the nucleus [Fig. 4(b)]. To describe
the variation of the surface tension and determine curvature
corrections, the surface tension results are fitted by a
second-order expansion in terms of the inverse radius
of the nucleus, γðRÞ ¼ γ∞ − 2δγ∞ð1=RÞ − κð1=RÞ2 [27].
Here, γ∞ is the surface tension of the flat interface, δ the

Tolman length that indicates the radius at which the
first-order correction becomes of order γ∞ [28], and κ ¼
−2k − k̄ with k and k̄ the bending and Gaussian rigidity,
respectively [27]. From simulations and density functional
theory, there is no consensus about the sign of the first-
order correction, although it is generally believed that its
magnitude is significantly less than the molecular diameter
[12]. The second-order correction κ is believed to be
positive and of the order of 1kBT, but simulation and
density functional theory results are scarce [9–12]. By
plotting γ∞ − γðRÞ normalized to γ∞ as a function of the
inverse nucleus radius [Fig. 4(c)], we find δ ¼ −0.8d and
κ ¼ 1.8kBT from the best fit (black line). This value of κ
lies within simulation values of 1.35kBT and 2kBT [6],
respectively, at reduced temperatures higher and lower than
in our case (see Supplemental Material [25]).
These direct measurements allow testing continuum

models of surface tensions at small scale. The widely used
theory of Kirkwood and Buff relates the surface tension to
the particle pair potential UðrÞ and the pair correlation
function gðrÞ. Assuming the gas is infinitely dilute and the
liquid has a homogeneous density ρ right up to the surface,
the surface tension of the planar interface is [29–31]

γKB ¼ πρ2

8

Z
∞

0

drr4U0ðrÞgðrÞ: ð1Þ

FIG. 2. Colloidal liquid nucleation at the particle scale. (a)–(d) Confocal microscope images of liquid nucleation. (a) Arrow indicates a
typical nucleus that disappears after a minute. (b) Arrow indicates a typical nucleus that is stable and grows. (c) Several stable nuclei that
have grown to full droplets. (d) Two nuclei merging at later stages, manifesting the well-known Ostwald ripening of molecular liquids.
(e)–(g) Reconstructed images of nucleation corresponding to the confocal microscope images (a)–(c). Large red (small blue) spheres
indicate particles with more than four (less than or equal to four) nearest neighbors, providing a good representation of liquid and gas
particles [4]. Here, nearest neighbors are identified as particles separated by less than 2rmin, the minimum of the pair correlation
function. (h) Time-averaged particle density as a function of distance r from the nucleus center of mass, for the unstable nucleus in
(e) (black squares), stable nucleus in (f) (red circles), and a fully grown droplet in (g) (blue triangles). Densities are determined by
particle counting. From the images, particle centers are located in three dimensions using recent extensions of the original code by
Crocker and Grier [26].
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We measure gðrÞ from three-dimensional reconstructions
of liquid clusters, and find increasing nearest-neighbor
correlations with increasing supersaturation as expected
[Fig. 4(d), inset]. We also measure the particle pair potential
UðrÞ directly from the spatial distribution of gas particles

[13], and find an attractive minimum, deepening with
decreasing ΔT [Fig. 4(d), main panel], as expected for
the growing critical Casimir attraction upon approaching
Tc. Using these measurements of gðrÞ andUðrÞ, and taking
ρ ¼ 3.3 μm−3, we compute surface tension values by
numerical integration. We obtain γKB ¼ 0.4kBT=d2 and
0.2kBT=d2 at ΔT ¼ 0.3°C and 0.4 °C, respectively, in good
agreement with the direct measurements in Fig. 4(a). The
second-order curvature correction κ can likewise be esti-
mated by a mean-field expression similar to Eq. (1) (see
Refs. [32,33] and the Supplemental Material [25]). We
obtain κ ¼ 1.3kBT, in reasonable agreement with the above
direct measurement of κ ¼ 1.8kBT. Our measurement and
mean-field estimate of these curvature corrections thus
show that both first- and second-order corrections are
essential; the resulting γðRÞ describes the data well
down to the critical nucleus size (Nc ≃ 30) for which the
surface tension has decreased by about 20% of its planar
value. Because ΔGc ∝ γ3 [34], this leads to a ∼50% lower
Gibbs free-energy barrier, resulting in 3 orders of magni-
tude higher nucleation rates for the nucleation barrier
ΔGc ≃ 10kBT of our system.
Our direct observation of liquid nucleation in colloidal

systems, highlighting the importance of curvature correc-
tions of the surface tension, can be translated to molecular
liquids. There, the surface tension is typically of the order
of 0.1 N=m, 8 orders of magnitude larger than that of our
colloidal liquid, reflecting the 8 orders of magnitude higher
molecular surface density associated with the 4 orders of
magnitude smaller molecular diameter. Consequently, in
these molecular systems, activation barriers are typically of
the order of 25kBT [35,36], 3 times higher than that of the
colloidal liquid, while the attempt frequency is ∼10 orders
of magnitude higher. The 20% lower surface tension of
critical nuclei then results in nucleation rates ∼7 orders of
magnitude higher than predicted by classical nucleation
theory. Hence, the need for accurate curvature corrections
is even more essential for molecular systems than for
colloidal systems. Our direct measurement and mean-field
estimates of the surface tension for nuclei consisting of a

FIG. 3. Gibbs free energy of nucleation. (a) Three-dimensional
reconstruction of liquid nuclei coexisting during nucleation
equilibrium. (b) Gibbs free energy of nucleation as a function
of nucleus radius determined from the relative frequency of
cluster sizes (inset), where we have used the particle density
ρ ¼ 3.3 μm−3 to convert N to R. Black squares show data for
ΔT ¼ 0.3 °C corresponding to T=T liq

c ¼ 0.72 [13], with T liq
c the

colloidal liquid critical temperature, and red circles show ΔT ¼
0.4 °C corresponding to T=T liq

c ¼ 0.83. Solid curves are fits by
classical nucleation theory.

FIG. 4. (a) Distribution of excess areas of ellipsoidal nuclei over the spherical ground state. Symbols distinguish nucleus sizes,
see legend. (b) Surface tension of nuclei as a function of size, determined from thermally induced surface shape fluctuations.
(c) Same data as in (b), plotted as a function of the inverse nucleus radius. Solid line is a fit up to second order in terms of (1=R).
(d) Particle pair potential (main panel) and liquid pair correlation function (inset) for ΔT ¼ 0.3 °C (open symbols) and ΔT ¼ 0.4 °C
(closed symbols).

PHYSICAL REVIEW LETTERS 121, 246102 (2018)

246102-4



only few tens of particles is of increasing importance as
nanoscience pushes material systems to ever smaller
dimensions.
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